研究生: |
陳依文 I-Wen Chen |
---|---|
論文名稱: |
人類嗜伊紅血球核醣核酸水解酶與氨基葡聚糖交互作用之分析 Characterization of glycosaminoglycan-binding activities of human eosinophil ribonucleases |
指導教授: |
張大慈
Dah-Tsyr Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 嗜伊紅血球陽離子蛋白 、嗜伊紅血球神經毒素 、肝素 、硫酸乙醯肝素 、人類嗜伊紅血球核醣核酸水解酶 |
外文關鍵詞: | ECP, EDN, Heparin, Heparan sulfate, eosinophil RNase |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類嗜伊紅血球在氣喘所帶來的組織傷害中扮演一個很重要的角色,其作用主要來自於大量釋放顆粒蛋白的,包括嗜伊紅血球陽離子蛋白(eosinophil cationic protein, ECP) 和嗜伊紅血球神經毒素(eosinophil derived neurontoxin, EDN)。嗜伊紅血球陽離子蛋白和嗜伊紅血球神經毒素皆屬於人類核糖核酸水解酶A家族的一員均已被推測為氣喘病與過敏性鼻炎相關的重要因子之一,並在臨床檢驗作為測定患者過敏嚴重度的生物標誌。此外二者尚具有抑制數種細胞生長的能力,例如人類上皮腫瘤細胞以及人類前骨髓白血病細胞。但是究竟嗜伊紅血球陽離子蛋白和嗜伊紅血球神經毒素是藉由何種細胞受器進到胞內仍然未知。
細胞表面的氨基葡聚糖蛋白可充當多種不同蛋白質連結至細胞的引導區,氨基葡聚糖根據其結構與構成的成分不同,可分布在多種不同物種組織細胞的表面上。其中,硫酸乙醯肝素可與多種不同的分子結合,例如生長因子,病毒,細菌以及多種不同蛋白質。嗜伊紅血球陽離子蛋白和嗜伊紅血球神經毒素已被證實可與肝素結合,因此推測它們也可以與硫酸乙醯肝素結合。在本研究中利用免疫螢光技術,發現硫酸乙醯肝素在嗜伊紅血球陽離子蛋白和嗜伊紅血球神經毒素的進入細胞過程,扮演很重要的角色。此外亦利用表面電漿共振技術測量了嗜伊紅血球陽離子蛋白和嗜伊紅血球神經毒素與硫酸乙醯肝素之間反應的強度以及相關特性。研究顯示當嗜伊紅血球陽離子蛋白的立體結構受到高濃度的尿素或是高溫破壞時,它與硫酸乙醯肝素之間的反應會明顯降低。由此可知,嗜伊紅血球陽離子蛋白與硫酸乙醯肝素的結合與其立體結構相關。而當反應環境的酸鹼值降低至接近細胞內小體的微酸環境時,嗜伊紅血球陽離子蛋白和嗜伊紅血球神經毒素與硫酸乙醯肝素的反應也會明顯減弱。綜合以上所述,本論文證實嗜伊紅血球陽離子蛋白和嗜伊紅血球神經毒素與細胞表面的結合以及進入細胞需要藉由細胞表面的硫酸乙醯肝素產生分子間的交互作用才能發生。
The eosinophil appears to be the primary leukocyte responsible for tissue damage in bronchial asthma, which occurs when the granule proteins, including eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN), are released into the extracellular space. ECP and EDN belong to the ribonuclease A superfamily. Both have been suggested as factors in allergic respiratory diseases, and thus used as clinical biomarkers for detecting the severity of asthma. Interestingly, ECP and EDN showed cytotoxicity toward several cell lines, including HL60 and A431 cells. The cytotoxicity has been correlated with the internalization of the RNases, but the cellular receptor for ECP or EDN has not been identified yet.
Cell surface glycosaminoglycan (GAG) proteoglycans act as docking sites for the binding of several different proteins to surface of eukaryotic cells. GAGs are presented almost ubiquitously on cell surface but vary with respect to their composition and quantity among different group of species, cell types, tissues, and cellular development stages. Heparan sulfate (HS), a ubiquitously expressed GAG, bind to a wide variety of extracellular ligands, including growth factors, virus, and bacteria. ECP and EDN known as heparin binding proteins may interact with the HS on the cell surface. Here, we demonstrate that HS is essential in the cellular uptake of ECP and EDN by immunofluorescence study. In addition, surface plasmon resonance instrument (SPR) was used to investigate the binding affinities and kinetics between ECP/EDN and heparan sulfate. The interaction between ECP and HS was obviously reduced while ECP was denatured with urea or boiling, indicating that ECP binding to HS in a 3 D structure dependent manner. The ECP/EDN-HS interactions are decreased at acidic pH, suggesting that ECP and EDN may dissociate from HS under acidic pH within endosomes. Taken together, these findings suggest that heparan sulfate proteoglycan serves as the cellular endocytic receptor for ECP and EDN.
1. Rosenberg, H.F. (1998). The eosinophil ribonucleases. Cell Mol Life Sci 54, 795-803.
2. Robinson, D.S., Assoufi, B., Durham, S.R., and Kay, A.B. (1995). Eosinophil cationic protein (ECP) and eosinophil protein X (EPX) concentrations in serum and bronchial lavage fluid in asthma. Effect of prednisolone treatment. Clin Exp Allergy 25, 1118-1127.
3. Sedgwick, J.B., Calhoun, W.J., Gleich, G.J., Kita, H., Abrams, J.S., Schwartz, L.B., Volovitz, B., Ben-Yaakov, M., and Busse, W.W. (1991). Immediate and late airway response of allergic rhinitis patients to segmental antigen challenge. Characterization of eosinophil and mast cell mediators. Am Rev Respir Dis 144, 1274-1281.
4. Baker, M.D., Holloway, D.E., Swaminathan, G.J., and Acharya, K.R. (2006). Crystal structures of eosinophil-derived neurotoxin (EDN) in complex with the inhibitors 5'-ATP, Ap3A, Ap4A, and Ap5A. Biochemistry 45, 416-426.
5. Breuer, K., Kapp, A., and Werfel, T. (2001). Urine eosinophil protein X (EPX) is an in vitro parameter of inflammation in atopic dermatitis of the adult age. Allergy 56, 780-784.
6. Boix, E., Nikolovski, Z., Moiseyev, G.P., Rosenberg, H.F., Cuchillo, C.M., and Nogues, M.V. (1999). Kinetic and product distribution analysis of human eosinophil cationic protein indicates a subsite arrangement that favors exonuclease-type activity. J Biol Chem 274, 15605-15614.
7. Slifman, N.R., Loegering, D.A., McKean, D.J., and Gleich, G.J. (1986). Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol 137, 2913-2917.
8. Vila, L., Sanz, M.L., Sanchez-Lopez, G., Garcia-Aviles, C., and Dieguez, I. (2001). Variations of serum eosinophil cationic protein and tryptase, measured in serum and saliva, during the course of immediate allergic reactions to foods. Allergy 56, 568-572.
9. Hoekstra, M.O., Hovenga, H., Gerritsen, J., and Kauffman, H.F. (1996). Eosinophils and eosinophil-derived proteins in children with moderate asthma. Eur Respir J 9, 2231-2235.
10. Carreras, E., Boix, E., Rosenberg, H.F., Cuchillo, C.M., and Nogues, M.V. (2003). Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 42, 6636-6644.
11. Domachowske, J.B., Dyer, K.D., Adams, A.G., Leto, T.L., and Rosenberg, H.F. (1998). Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26, 3358-3363.
12. Rosenberg, H.F. (1995). Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem 270, 7876-7881.
13. Domachowske, J.B., Dyer, K.D., Bonville, C.A., and Rosenberg, H.F. (1998). Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177, 1458-1464.
14. Rosenberg, H.F., and Domachowske, J.B. (2001). Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 70, 691-698.
15. Yang, D., Rosenberg, H.F., Chen, Q., Dyer, K.D., Kurosaka, K., and Oppenheim, J.J. (2003). Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102, 3396-3403.
16. Yang, D., Chen, Q., Rosenberg, H.F., Rybak, S.M., Newton, D.L., Wang, Z.Y., Fu, Q., Tchernev, V.T., Wang, M., Schweitzer, B., Kingsmore, S.F., Patel, D.D., Oppenheim, J.J., and Howard, O.M. (2004). Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 173, 6134-6142.
17. Gleich, G.J., Loegering, D.A., Bell, M.P., Checkel, J.L., Ackerman, S.J., and McKean, D.J. (1986). Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A 83, 3146-3150.
18. Bandtlow, C.E., and Zimmermann, D.R. (2000). Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 80, 1267-1290.
19. Kjellen, L., and Lindahl, U. (1991). Proteoglycans: structures and interactions. Annu Rev Biochem 60, 443-475.
20. Barth, H., Schafer, C., Adah, M.I., Zhang, F., Linhardt, R.J., Toyoda, H., Kinoshita-Toyoda, A., Toida, T., Van Kuppevelt, T.H., Depla, E., Von Weizsacker, F., Blum, H.E., and Baumert, T.F. (2003). Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 278, 41003-41012.
21. Sandgren, S., Cheng, F., and Belting, M. (2002). Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem 277, 38877-38883.
22. Salek-Ardakani, S., Arrand, J.R., Shaw, D., and Mackett, M. (2000). Heparin and heparan sulfate bind interleukin-10 and modulate its activity. Blood 96, 1879-1888.
23. Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., and Zako, M. (1999). Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68, 729-777.
24. Belting, M. (2003). Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 28, 145-151.
25. Tan-Chi Fan, I.-W.C., and Margaret Dah-Tsyr Chang (2006). A heparan sulfate facilitated pathway for the internalization of eosinophil cationic protein through lipid raft-dependent macropinocytosis. pp. 42: hsin chu.
26. Szabo, A., Stolz, L., and Granzow, R. (1995). Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr Opin Struct Biol 5, 699-705.
27. Yu, H., Munoz, E.M., Edens, R.E., and Linhardt, R.J. (2005). Kinetic studies on the interactions of heparin and complement proteins using surface plasmon resonance. Biochim Biophys Acta 1726, 168-176.
28. Kett, W.C., Osmond, R.I., Moe, L., Skett, S.E., Kinnear, B.F., and Coombe, D.R. (2003). Avidin is a heparin-binding protein. Affinity, specificity and structural analysis. Biochim Biophys Acta 1620, 225-234.
29. Esko, J.D., and Lindahl, U. (2001). Molecular diversity of heparan sulfate. J Clin Invest 108, 169-173.
30. Katz, H.R., Austen, K.F., Caterson, B., and Stevens, R.L. (1986). Secretory granules of heparin-containing rat serosal mast cells also possess highly sulfated chondroitin sulfate proteoglycans. J Biol Chem 261, 13393-13396.
31. Rostand, K.S., and Esko, J.D. (1997). Microbial adherence to and invasion through proteoglycans. Infect Immun 65, 1-8.
32. Wilsie, L.C., and Orlando, R.A. (2003). The low density lipoprotein receptor-related protein complexes with cell surface heparan sulfate proteoglycans to regulate proteoglycan-mediated lipoprotein catabolism. J Biol Chem 278, 15758-15764.
33. Fredens, K., Dahl, R., and Venge, P. (1991). In vitro studies of the interaction between heparin and eosinophil cationic protein. Allergy 46, 27-29.
34. Maeda, T., Kitazoe, M., Tada, H., de Llorens, R., Salomon, D.S., Ueda, M., Yamada, H., and Seno, M. (2002). Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem 269, 307-316.
35. Lee, S.C., Guan, H.H., Wang, C.H., Huang, W.N., Tjong, S.C., Chen, C.J., and Wu, W.G. (2005). Structural basis of citrate-dependent and heparan sulfate-mediated cell surface retention of cobra cardiotoxin A3. J Biol Chem 280, 9567-9577.
36. Zhang, J., Dyer, K.D., and Rosenberg, H.F. (2002). RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res 30, 1169-1175.
37. Venge, P., Bystrom, J., Carlson, M., Hakansson, L., Karawacjzyk, M., Peterson, C., Seveus, L., and Trulson, A. (1999). Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy 29, 1172-1186.
38. Lookene, A., Chevreuil, O., Ostergaard, P., and Olivecrona, G. (1996). Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization, and kinetics. Biochemistry 35, 12155-12163.
39. Capila, I., and Linhardt, R.J. (2002). Heparin-protein interactions. Angew Chem Int Ed Engl 41, 391-412.
40. Chi-Shin Hwang, D.M.D.-T.C. (2006). Cell Entry Ability of Recombinant Antitumor Ribonucleases and
Potential Application in Therapy of Brain Tumors, Taiwan, Hsin-chu.
41. Ledin, J., Staatz, W., Li, J.P., Gotte, M., Selleck, S., Kjellen, L., and Spillmann, D. (2004). Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279, 42732-42741.
42. Wu, C.M., Chang, H.T., and Chang, M.D. (2004). Membrane-bound carboxypeptidase E facilitates the entry of eosinophil cationic protein into neuroendocrine cells. Biochem J 382, 841-848.
43. Hochart, H., Jenkins, P.V., Smith, O.P., and White, B. (2006). Low-molecular weight and unfractionated heparins induce a downregulation of inflammation: decreased levels of proinflammatory cytokines and nuclear factor-kappaB in LPS-stimulated human monocytes. Br J Haematol 133, 62-67.
44. Hannah, J.H., Menozzi, F.D., Renauld, G., Locht, C., and Brennan, M.J. (1994). Sulfated glycoconjugate receptors for the Bordetella pertussis adhesin filamentous hemagglutinin (FHA) and mapping of the heparin-binding domain on FHA. Infect Immun 62, 5010-5019.
45. van Putten, J.P., and Paul, S.M. (1995). Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. Embo J 14, 2144-2154.
46. Noel, G.J., Love, D.C., and Mosser, D.M. (1994). High-molecular-weight proteins of nontypeable Haemophilus influenzae mediate bacterial adhesion to cellular proteoglycans. Infect Immun 62, 4028-4033.
47. Bame, K.J., and Esko, J.D. (1989). Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J Biol Chem 264, 8059-8065.
48. Murthy, K.H., Smith, S.A., Ganesh, V.K., Judge, K.W., Mullin, N., Barlow, P.N., Ogata, C.M., and Kotwal, G.J. (2001). Crystal structure of a complement control protein that regulates both pathways of complement activation and binds heparan sulfate proteoglycans. Cell 104, 301-311.
49. Caldwell, E.E., Andreasen, A.M., Blietz, M.A., Serrahn, J.N., VanderNoot, V., Park, Y., Yu, G., Linhardt, R.J., and Weiler, J.M. (1999). Heparin binding and augmentation of C1 inhibitor activity. Arch Biochem Biophys 361, 215-222.
50. Spillmann, D., Witt, D., and Lindahl, U. (1998). Defining the interleukin-8-binding domain of heparan sulfate. J Biol Chem 273, 15487-15493.
51. Amara, A., Lorthioir, O., Valenzuela, A., Magerus, A., Thelen, M., Montes, M., Virelizier, J.L., Delepierre, M., Baleux, F., Lortat-Jacob, H., and Arenzana-Seisdedos, F. (1999). Stromal cell-derived factor-1alpha associates with heparan sulfates through the first beta-strand of the chemokine. J Biol Chem 274, 23916-23925.
52. Rusnati, M., Tulipano, G., Spillmann, D., Tanghetti, E., Oreste, P., Zoppetti, G., Giacca, M., and Presta, M. (1999). Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides. J Biol Chem 274, 28198-28205.
53. Nelson, R.M., Cecconi, O., Roberts, W.G., Aruffo, A., Linhardt, R.J., and Bevilacqua, M.P. (1993). Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 82, 3253-3258.
54. Nelson, R.M., Dolich, S., Aruffo, A., Cecconi, O., and Bevilacqua, M.P. (1993). Higher-affinity oligosaccharide ligands for E-selectin. J Clin Invest 91, 1157-1166.
55. Saito, H., Dhanasekaran, P., Nguyen, D., Baldwin, F., Weisgraber, K.H., Wehrli, S., Phillips, M.C., and Lund-Katz, S. (2003). Characterization of the heparin binding sites in human apolipoprotein E. J Biol Chem 278, 14782-14787.
56. Weisgraber, K.H., and Rall, S.C., Jr. (1987). Human apolipoprotein B-100 heparin-binding sites. J Biol Chem 262, 11097-11103.
57. Ziegler, A., and Seelig, J. (2004). Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters. Biophys J 86, 254-263.
58. Patrie, K.M., Botelho, M.J., Franklin, K., and Chiu, I.M. (1999). Site-directed mutagenesis and molecular modeling identify a crucial amino acid in specifying the heparin affinity of FGF-1. Biochemistry 38, 9264-9272.
59. Zhang, J., Zhang, Y.P., and Rosenberg, H.F. (2002). Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat Genet 30, 411-415.
60. Rosenberg, H.F., and Dyer, K.D. (1995). Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. J Biol Chem 270, 30234.
61. Sorrentino, S., and Libonati, M. (1997). Structure-function relationships in human ribonucleases: main distinctive features of the major RNase types. FEBS Lett 404, 1-5.
62. Harper, J.W., and Vallee, B.L. (1988). Mutagenesis of aspartic acid-116 enhances the ribonucleolytic activity and angiogenic potency of angiogenin. Proc Natl Acad Sci U S A 85, 7139-7143.
63. Rosenberg, H.F., and Dyer, K.D. (1996). Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic Acids Res 24, 3507-3513.