簡易檢索 / 詳目顯示

研究生: 余志賢
Chi-Hsien Yu
論文名稱: 團聯式共聚物之奈米結構研究:階級性自組裝結構與光子晶體材料之製備
Fundamental Studies on the Nanostructure of Microphase Separated Block Copolymers:The Formation of Self-assembled Hierarchical Morphologies and Fabrications of Photonic Bandgap Materials
指導教授: 陳信龍
Hsin-Lung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 94
中文關鍵詞: 團聯式共聚合物光子晶體四面堆積圓柱
外文關鍵詞: block copolymer, photonic crystal, square packed cylinder
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以團聯式共聚合物(block copolymer)之分子自組裝特性為主軸,以摻合均聚物使系統產生微相分離來製造出具有規則性之奈米形態(如1-D stacked lamellae、double gyroid等 ),並將之應用於光子晶體材料上;另一方面利用團聯式共聚合物與界面活性劑以離子鍵錯合之方式,使錯合系統自組裝形成階級性奈米結構(hierarchical nanostructure)期望能應用於奈米材料上。
    於研究中我們採用polystyrene-block-polyisoprene(PS-b-PI)為系統,以均聚物h-PS、h-PI進行雙成分及三成分wet brush摻合。於三成分摻合(PS-b-PI/h-PS/h-PI)中,以等量摻合之方式使系統維持層狀奈米結構,並藉由不同組成下所對應之層狀厚度(interlamellar distance),來對系統之光學性質進行測試,以作為1-D光子晶體材料;雙成分摻合(PS-b-PI/h-PS)則是藉由控制系統內PS的體積分率(ψPS)為0.66,使系統呈現3-D double gyroid結構,並配合臭氧裂解程序的應用,來使系統的介電常數對比提高,並探討其於光子晶體材料應用之可行性。
    在共聚物polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP)與界面活性劑dodecylbenzene sulfonic acid (DBSA)利用質子化錯合之方面,主要探討不同錯合組成(y=0.25~1.0)系統之形態變化,以FTIR、POM、SAXS、低溫切片、TEM及TEMS模擬等來對各組成之形態進行討論,在組成y=0.25時由其lamella-within-lamella形態中有少部分的cylinder-within-lamella形態,推測系統”zipper mechanism”之存在;並於組成y=0.5及y=0.75發現了cylinder-within-lamella形態的四面圓柱堆積(square-packed cylinder)結構,這是由於系統內較為延伸之P4VP鏈段傾向分布於square phase之Wigner-Seitz cell 之角落,藉此來減輕square phase 之packing frustration效應,以增加其形態之穩定度,此結構有別於一般常見的六角圓柱堆積(hexagonally packed cylinder),於目前文獻上尚未被觀察到,而其形態之確立將有助於我們於2-D結構奈米材料上之應用。


    Microphase separation in self-assembled diblock copolymers may generate a series of long-range ordered microdomain morphology (1-D stacked lamellae, hexagonally packed cylinders, gyroid, and BCC packed spheres) depending on the strength of interblock repulsion and the composition of the constituting blocks. In the present research, we have investigated the morphologies of self-assembled blend system constituting of a diblock copolymer polystyrene-b-polyisoprene (PS-b-PI) and a homopolymer polystyrene (PS) exhibiting lamellae and bicontunious gyroid periodic microstructures as 1-D and 3-D photonic crystals materials. Through blending PS and PI homopolymer with a lamellae-forming PS-b-PI with short block length, we have systematically increased the lamella thickness, while effectively retaining the long-range order. The resultant blends exhibits excellent visible light (350~600 nm) reflectance with wavelength tunable by the lamellar thickness. Further a bicontinuous gyroid morphology has been successfully generated in PS-b-PI/PS blend. The PI phase in these blends were selectively degraded using ozone to yield thin films containing bicontinuous nano-channels. The nanoporous film thus produced is expected to display high refractive index contrast useful for 3-D photonic crystal applications. In addition, the hierarchical structures of polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP) and dodecylbenzene sulfonic acid (DBSA) complex systems were investigated by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The ionic ally bonded diblock copolymer-surfactant complex was observed to form supramolecules exhabiting structure-within-structure morphology at two length scales. A new morphology of square-packed cylinder-within-lamellae has been observed in the PS-b-P4VP(DBSA)0.5/0.75 system which could be ascribe to the homogeneous binding between P4VP chain and DBSA. The more stretched P4VP chains can reach to fill the corner of the Wigner-Seitz cell of square lattice to relieve the higher packing frustration so that the stability of square-packed cylinder-within-lamellae is enhanced. This interesting morphology is quit different from the usually observed hexagonally packed cylinder morphology and could be useful for 2-D pattern nanomaterial applications.

    總目錄 摘要…………………………………………………………………………………..Ⅰ Abstract………………………………………………………………………………Ⅱ 目錄…………………………………………………………………………………..Ⅲ 圖目錄………………………………………………………………………………..Ⅴ 表目錄………………………………………………………………………………..Ⅹ 一、文獻回顧………………………………….……………………...……………..1 1.1前言………………………………….……………………………………...1 1.2光子晶體概論….…………………………………………………………...3 1.3團聯式共聚物及其摻合體之微相分離形態………………………………9 1.4利用團聯式共聚物分子自組裝特性製造光子晶體材料…………………18 1.5研究動機與目的……………………………………………………………29 二、實驗部分………………………………………………………….…………….30 2.1樣品……………………………………………………...………………….30 2.2實驗項目……………………………………………………...…………….32 2.3儀器原理……………………………………………………...…………….35 三、結果與討論…………………………………………………..…………………37 3.1以PS-b-PI/h-PS/h-PI三成分摻合體製作一維光子晶體材料之基礎研究... ……………………………………………………………………………..37 3.1-1摻合體奈米結構測………………………………………………………37 3.1-2光學性質測定…………………………………………………………....46 3.2以PS-b-PI/h-PS摻合體製作三維光子晶體材料及臭氧裂解程序之探討… ……………………………………………………………………………..49 3.3 Comb-Coil團聯式共聚合物與界面活性劑階級性自組裝結構(hierarchically self-assembly structure-within-structure)於奈米材料之應用………………..………………………………………………………….57 四、結論……………………………………………………………………………..90 五、參考文獻………………………………………………………………………..91 圖目錄 圖1.1-1 不同種類的光子晶體製備方法……………………….……………….2 圖1.2-1 Al2O3中fcc排列之光子晶體能隙圖…………………….…………….4 圖1.2-2 光在光能隙材料中之導光……………………………………………...4 圖1.2-3 光子晶體的結構………………………………………………………...5 圖1.2-4 以lithographic method製造單層光子晶體週期結構之流程圖……….5 圖1.2-5 3-D光子晶體結構圖……………………………………………………6 圖1.2-6 GaAs系統不同介電常數對比的1-D週期結構光子晶體之能隙圖….7 圖1.3-1 不同理論之相圖比較.…………………………………………………..12 圖1.3-2 Matsen所推導出的團聯式共聚合物相圖……………………………..12 圖1.3-3 經由實驗所得之PS-b-PI雙團聯式共聚合物相圖……………………13 圖1.3-4 PS-b-PI系統之各種微相分離結構…………………………………….13 圖1.3-5 以wet brush方式摻合來改變團聯式共聚合物摻合體之形態……….16 圖1.3-6 由PS-b-PI及PS-b-PB分別摻合h-PS所得之恆溫相圖……………..16 圖1.3-7 以共聚物混摻的方式來改變系統之形態……………………………...17 圖1.4-1 PS-b-PI/h-PS/h-PI摻合體系統之TEM與反射率、穿透度圖譜……..18 圖1.4-2 多層系統示意圖………………………………………………………...20 圖1.4-3 多層結構之能隙圖……………..………..……………………………...20 圖1.4-4 不同3-D結構及其能隙圖………………………………..…………….21 圖1.4-5 PS-b-P4VP及NDP以氫鍵方式錯合之化學結構圖……..……………24 圖1.4-6 PS-b-P4VP(NDP)1.0錯合物經TEM觀察到的各種hierarchical structure-within-structure形態………………………………………….24 圖1.4-7 PS-b-P4VP及Zn(DBS)2以配位錯合之化學結構圖及TEM圖………25 圖1.4-8 poly(4-vinylpyridine)與p-dodecylbenzenesulfonic acid質子化反應…..25 圖1.4-9 PS-b-P4VP及過量之DBSA錯合錯合系統化學結構圖………………26 圖1.4-10 PS(238.1K)-b-P4VP(49.5K)與DBSA錯合系統之SAXS、TEM及反射率圖………………………………………………………………………….26 圖1.4-11用PS-b-P4VP與HABA以氫鍵錯合,將錯合體以甲醇浸泡而得具奈米管道之薄膜,並用以製造2-D排列的Ni金屬奈米線之流程圖……...28 圖2.3-1 臭氧化過程之概念圖……………………………………………………..33 圖3.1-1 SAXS profiles of PS-b-PI/h-PS/h-PI blends (Whomo/Wblock 2/1)………..39 圖3.1-2 SAXS profiles of PS-b-PI/h-PS/h-PI blends (Whomo/Wblock 3/1)………..40 圖3.1-3 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=1/2…………...41 圖3.1-4 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=1/1……………42 圖3.1-5 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=2/1……………42 圖3.1-6 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=3/1……………43 圖3.1-7 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=4/1……………43 圖3.1-8 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=5/1、6/1……..44 圖3.1-9 共聚物與均聚物之過量wet brush摻合圖……………….……………..44 圖3.1-10 摻合體各組成與interlamellar distance關係圖...…….…………………45 圖3.1-11 PS-b-PI/h-PS/h-PI摻合體系統各組成之反射光波長與反射百分比關係圖………………………………...………………………………………47 圖3.1-12 PS-b-PI層狀系統的band-gap模擬圖…….……………. ……………48 圖3.2-1 PS(44.8K)-b-PI(43.6K)/ hPS(10K)摻合體之TEM圖………………….49 圖3.2-2 臭氧化過程流程圖……………………………………………………...50 圖3.2-3 SI(88.4K) / hPS(10K)系統未經臭氧化處理的SEM圖………………..51 圖3.2-4 SI(88.4K) / hPS(10K)系統臭氧化處理6.5小時之SEM圖…………..52 圖3.2-5 SI(266K) /hPS(10K)系統未經臭氧化處理的SEM圖………………...52 圖3.2-6 SI(266K) /hPS(10K)系統經臭氧化程序6.5小時之SEM圖…………53 圖3.2-7 SI(266K) /hPS(10K)系統臭氧化程序36小時SEM圖….……………55 圖3.2-8 double gyroid於3-D座標下所呈現之形態…………………………...56 圖3.2-9 以TEMS沿(211)方向模擬double gyroid所得之形態……………….56 圖3.3-1 PS-b-P4VP與DBS錯合形成lamellae-within-lamellae之形態……...58 圖3.3-2 pure DBSA之廣角度X光散射圖譜………………..………………....59 圖3.3-3 PS-b-P4VP (Mn=99.8K)與DBSA錯合後,不同組成下之FTIR光譜圖 ,1300~800 cm-1……………………………………………………….61 圖3.3-4 PS-b-P4VP (Mn=99.8K)與DBSA錯合後,不同組成下之FTIR光譜圖 ,1700~1300 cm-1……………………………………………………...61 圖3.3-5 PS-b-P4VP(DBSA)y 系統於室溫下之POM圖………………………62 圖3.3-6 規則排列之層狀結構圖………………………………………………..62 圖3.3-7 pure PS-b-P4VP之SAXS圖譜………………………………………..64 圖3.3-8 PS-b-P4VP與DBSA錯合後之SAXS圖譜,q range為1.0~3.2 nm-1... …………………………………………………………………………...64 圖3.3-9 PS-b-P4VP(DBSA)y錯合系統各組成(y=0.25~1.0)之1-D correlation曲 線………………………………………………………………………...65 圖3.3-10 PS-b-P4VP(DBSA)1.0錯合系統之1-D correlation曲線………………66 圖3.3-11 PS-b-P4VP(DBSA)1.0錯合系統之SAXS圖譜,q range為0.04~0.8 nm-1 …………………………………………………………………………...68 圖3.3-12 PS-b-P4VP(DBSA)y錯合系統於室溫下之SAXS圖譜,q range為0.04 ~0.8 nm-1………………………………………………………………71 圖3.3-13 PS-b-P4VP(DBSA)y錯合系統y=0.5及0.75之SAXS圖譜,q range為0.04~0.8 nm-1,及cylinder form factor計算曲線之對應…….………..72 圖3.3-14 pure PS-b-P4VP之TEM圖……………………………….……………73 圖3.3-15 PS-b-P4VP(DBSA)1.0之TEM圖……………………………………….74 圖3.3-16 以TEMS模擬cylinder with hexagonal packed沿(139)方向之TEM模.. 擬圖……………………………………………………………………..74 圖3.3-17 PS-b-P4VP(DBSA)1.0 cylinder with hexagonal packed之3-D結構模型及2-D圓柱截面圖…………………………………………………………75 圖3.3-18 PS-b-P4VP(DBSA)0.25之TEM圖………………………………………77 圖3.3-19 PS-b-P4VP與DBSA錯合時之結構圖………………………………....78 圖3.3-20 PS-b-P4VP(DBSA)0.5之TEM圖………………………………………..78 圖3.3-21 PS-b-P4VP(DBSA)0.75之TEM圖……………………………………….79 圖3.3-22 square及hexagonal phase單一microdomain中高分子鏈段延伸之示意 圖………………………………………………………………………….79 圖3.3-23 zipper mechanism發生時,錯合體系統內P4VP鏈段之結構圖……...80 圖3.3-24 PS domain形成cylinder時,誘導square phase的形成結構圖……….80 圖3.3-25 PS-b-P4VP(DBSA)0.25之變溫SAXS圖譜………………………………82 圖3.3-26 PS-b-P4VP(DBSA)0.5之變溫SAXS圖譜及130℃、150℃之SAXS對照 圖…………………………………………………………………………..83 圖3.3-27以TEMS沿(110)模擬hexagonal及square packed cylinder之模擬圖...85 圖3.3-28 PS-b-P4VP(DBSA)0.5於130℃下annealing 2小時之TEM圖…………85 圖3.3-29 PS-b-P4VP(DBSA)0.75之變溫SAXS圖譜………………………………86 圖3.3-30 PS-b-P4VP(DBSA)0.75於130℃下annealing兩小時之TEM圖………..88 圖3.3-31以TEMS由(110)方向模擬hexagonal及square packed cylinder共存之模 擬圖……………………………………………………………………….88 圖3.3-32 PS-b-P4VP(DBSA)y square packed cylinder之3-D結構模型及2-D圓柱 截面圖…………………………………………………………………….89 表目錄 表一、光子晶體與半導體的差異…………………………………………………..3 表二、PS-b-PI/hPS/hPI摻合體系統之Interlamellar distance厚度…………………45 表三、PS-b-PI/h-PS/h-PI摻合體系統之Interlamellar distance厚度與反射光波長關係……………………………………………………………………………………..47 表四、PS-b-P4VP(DBSA)y錯合系統之Interlamellae distance厚度………………65 表五、PS-b-P4VP(DBSA)y錯合系統各組成PS之domain size及其形態……….73

    六、參考文獻
    [1] “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, E. Yablonovitch, Phys. Rev. Lett. 1987,58,2059 .
    [2] “Strong localization of photons in certain disordered dielectric superlattices” S. John, Phys. Rev. Lett. 1987,58,2486.
    [3] Lin, S.-Y.; Fleming, J. G.; Hetherington, D. L.; Smith, B. K.; Biswas, R.; Ho, K. M.; Sigalas, M. M.; Zubrzycki, W.; Kurtz S. R.; Bur J., Nature 1998, 394, 251.
    [4] Krauss, T. F.; De La Rue R. M.; Brand, S., Nature 1996, 383,699.
    [5] Wanke, M. C.; Lehmann, O.; Mu¨ ller, K.; Wen Q.; Stuke, M., Science 1997, 275, 1284.
    [6] Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.;Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I.-Y.S.; McCord-Maughon, D.; Qin, J.; Rockel, H.; Rumi, M.; Wu, X.-L.;Marder, S. R.; Perry, J. W., Nature 1999, 398, 51.
    [7] Sanford A. Asher; John Holtz; Lei Liu; Zhijun Wu, J. Am. Chem. Soc. 1994,116, 4997.
    [8] Anvar A. Zakhidov; Ray H. Baughman; Zafar Iqbal, Changxing Cui; Ilyas Khayrullin, Socrates O. Dantas; Jordi Marti; Victor G. Ralchenko, Science 1998, 282, 897.
    [9] J. D. Rancourt Optical Thin Films–User Handbook, SPIE, Bellingham,WA 1996.
    [10] J. S. Foresi; P. R. Villeneuve; J. Ferrera, E. R. Thoen; G. Steinmeyer; S. Fan,J. D. Joannopoulos; L. C. Kimerling; H. I. Smith; E. P. Ippen, Nature 1997,390, 143.
    [11] Urbas, A.; Fink, Y.; Thomas, E. L., Macromolecules 1999, 32, 4748.
    [12] Fink Y.; Urbas A. M.; Bawendi, M. G.; Jonnopoulos, J. D.; Thomas, E. L., J., Lightwave Tech. 1999, 17, 1963.
    [13] Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J., Adv.Mat. 2000, 12, 812.
    [14] E. Yablonovitch; T. J. Gmitter, Phys. Rev. Lett. 1989,63, 1950.
    [15] John D. J.; Robert D. Meade; Joshua N. Winn Photonic Crystal-Molding the Flow of Light
    [16] S-Y Lin; J.G. Fleming , Optics Letters 1999, 24, 49.
    [17] M. Plihaland; A. A. Maradudin, Phys. Rev. B 1991,44,8565
    [18] M. Plihaland; A. A. Maradudin, Opt. Comm. 1991,80,199
    [19] D. Cassagne; C. Jouanin; D. Bertho, Phys. Rev. B 1996,53,7134
    [20] Alexander C. Edrington; Augustine M. Urbas; Peter DeRege; Cinti X. Chen; Timothy M. Swager; Nikos Hadjichristidis; Maria Xenidou; Lewis J. Fetter; John D. Joannopoulos; Yoel Fink; Edwin L. Thomas, Advanced Materials 2001,13,421
    [21] Nojima S.; Nkano H.; Takahashi Y.; Ashida T., Polymer 1994,35,3479.
    [22] Nojima S.; Kato K.; Yamamoto S.; Ashida T., Macromolecules 1992,25,2237.
    [23] Nojima S.; Nkano H.; Takahashi Y.; Ashida T., Polymer Journal 1995,27,673.
    [24] Nojima S.; Nkano H.; Ashida T., Polymer 1993,34,4168.
    [25] Nojima S.; Hashizume K.; Rohadi A.; Sasaki S., Polymer 1997,38,2711.
    [26] Nojima S.; Kikuchi N.; Rohadi A.; Tanimoto S.; Sasaki S., Macromolecules 1999,32,3727.
    [27] Nojima S.; Tanaka H.; Rohadi A.; Sasaki S., Polymer 1998,39,1727.
    [28] Ryan A. J.; Hamley I. W.; Bras W.; Bates F. S., Macromolecules 1995,28,3860.
    [29] Rangarajan, P.; Register, R. A.; Adamson, D. H.; Fetters, L.J.; Bras, W.; Naylor, S.; Ryan, A. J., Macromolecules 1995,28, 1422.
    [30] Jloudas G.;Tsitsilianis C., Macromolecules 1997,30, 4381.
    [31] Hamley I. W.; Fairclough J. P. A.; Bates F. S.; Ryan A. J., polymer 1998,39,1429.
    [32] Unger R.; Beyer D.; Donth E., polymer1991, 32, 3305.
    [33] Meier, D. J., J. Polym. Sci., part C 1969, 26, 81.
    [34] Helfand E., Macromolecules 1975, 8, 552.
    [35] Helfand E.; Wasserman Z. R., Macromolecules 1976, 9, 879.
    [36] Helfand E.; Wasserman Z. R., Macromolecules 1980, 13, 994.
    [37] Helfand E.; Wasserman Z. R., Macromolecules 1978, 11, 960.
    [38] Leibler L., Macromolecules 1980, 13, 1602.
    [39] Vavasour J. D.; Whitemore M. D., Macromolecules 1992, 25, 5477.
    [40] M. W. Matsen; M. Schick, Physical Review Letters, 1994,72,2660.
    [41] M. W. Matsen; F. S. Bates, Macromolecules 1996, 29, 1091.
    [42] M. W. Matsen; F. S. Bates, Macromolecules 1996, 29, 7641.
    [43] Ashish K. Khandpur; Stephan Farster; Frank S. Bates, Macromolecules 1995,28, 8796.
    [44] Winey, K. I.;T homas, E. L.; Fetters, L. J. ,Macromolecules 1992,25,2645.
    [45] Adedeji A.;J amieson A. M.; Hudson, S. D. ,Polymer 1995,36,2753.
    [46] Hashimoto T.; Tanaka H.; Hasegawa H., Macromolecules 1990,23,4378.
    [47] Tanaka H.; Hasegawa H.; Hashimoto T., Macromolecules 1991,24,240.
    [48] I. W. Hamley, The Physical of Block Copolymers 1998,Chapter 6.
    [49] Winey K. I. et al., Macromolecules 1992, 25, 2645.
    [50] Francois Court; Takeji Hashimoto, Macromolecules 2001, 34, 2536.
    [51] Francois Court; Takeji Hashimoto, Macromolecules 2002, 35, 2566.
    [52] Yoel Fink; Joshua N. Winn; Shanhui Fan; Chiping Chen; Jurgen Michel; John D. Joannopoulos; Edwin L. Thomas, Science 1998, 282, 1679.
    [53] Younan Xia; Byron Gates; Zhi-Yuan Li, Advanced Materials 2001, 13, 409.
    [54] L. Martin-Moreno; F. J. Garcia-Vidal; A. M. Somoza, Physical Review Letters 1999, 83, 73.
    [55] Yoel Fink; Augustine M. Urbas; Moungi G. Bawendi; John D. Joannopoulos; Edwin L. Thomas, Journal of Lightwave Technology 1999, 17, 1963.
    [56] Takeji Hashimoto; Kiyoharu Tsutsumi; Yoshinori Funaki, Langmuir 1997, 13, 6869.
    [57] Eberhard Rischbieter; Hendrik Stein; Adrian Schumpe, Journal of Chemical and Engineering Data 2000, 45, 338.
    [58] Vanessa Z.-H. Chan; James Hoffman; Victor Y. Lee; Hermis Iatrou; Apostolos Avgeropoulos; Nikos Hadjichristidis; Robert D. Miller; Edwin L. Thomas, Science 1999, 286, 1716.
    [59] Janne Ruokolainen; Gerrit ten Brinke; Olli Ikkala, Advanced Materials 1999, 11, 777.
    [60] Riikka Mäki-Ontto; Karin de Moel; Walter de Odorico;Janne Ruokolainen; Manfred Stamm; Gerrit ten Brinke;Olli Ikkala, Advanced Materials 2001, 13, 117.
    [61] Harri Kosonen; Sami Valkama; Juha Hartikainen; Hannele Eerika1inen; Mika Torkkeli; Kaija Jokela; Ritva Serimaa; Franciska Sundholm;Gerrit ten Brinke; Olli Ikkala, Macromolecules 2002,35,10149.
    [62] Sami Valkama; Teemu Ruotsalainen; Harri Kosonen; Janne Ruokolainen; Mika Torkkeli; Ritva Serimaa; Gerrit ten Brinke; Olli Ikkala, Macromolecules 2003, 36, 3986.
    [63] Janne Ruokolainen; Juha Tanner; Gerrit ten Brinke; Olli Ikkala; Mika Torkkeli; Ritva Serimaa, Macromolecules 1995, 28, 7779.
    [64] Olli Ikkala; Janne Ruokolainen; Gerrit ten Brinke, Macromolecules 1995, 28, 7088.
    [65] Hsin-Lung; Ming-Siao Hsiao, Macromolecules 1999,32,2967.
    [66] Harri Kosonen; Sami Valkama; Juha Hartikainen; Hannele Eerika1inen;Mika Torkkeli; Kaija Jokela; Ritva Serimaa; Franciska Sundholm; Gerrit ten Brinke; Olli Ikkala, Macromolecules 2002, 35, 10149.
    [67] H. Kosonen; S. Valkama; J. Ruokolainen; M. Torkkeli; R. Serimaa; G. ten Brinke; O. Ikkala, The European Physical Journal E 2003,10,69.
    [68] Alexander Sidorenko; Igor Tokarev; Sergiy Minko; Manfred Stamm, Journal of American Chemical Society,2003.
    [69] K. de Moel;G. O. R. Alberda van Ekenstein; H. Nijland; E. Polushkin; G. ten Brinke; R. Mäki-Ontto; O. Ikkala, Chem. Mater.,2001,13,4580.
    [70] Amir Wagih Fahmi; Hans-Georg Braun; Manfred Stamm, Advanced Materials,2003,15,1201.
    [71] Matti Knaapila; Roman Stepanyan; Lockhart E. Horsburgh; Andrew P. Monkman; Ritva Serimaa; Olli Ikkala; Andrei Subbotin; Mika Torkkeli; Gerrit ten Brinke, J. Phys. Chem. B ,2003, 107, 14199.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE