簡易檢索 / 詳目顯示

研究生: 林明青
論文名稱: Kappa:加上漏電流與浮接導體的金屬導線模擬軟體
Kappa: An Interconnect Simulator with Tunneling Current and Floating Conductor
指導教授: 張彌彰
口試委員: 張彌彰
張克正
郭治群
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 103
中文關鍵詞: interconnect
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體技術持續的進步,最小線寬越來越小,元件尺寸及元件間的連結都縮小了。當元件間的導線越來越靠近時,寄生電容、寄生電阻就變得很重要。為了降低寄生電容,研發出低介電質材料以及超低介電質材料。這些材料可以讓由尺寸縮小造成導線間電容值增加的曲線變得平緩一點,這項優點讓這先進技術很快的被採用。然而縮小的導線線間距也會使得漏電流增加,當漏電流增強到一定程度之後就會對介電層造成永久性的破壞。所以如果能將漏電流納入模擬範疇,則可讓導線的模擬技術更上層樓,因此造就了Kappa的誕生。
    Kappa 是用以模擬二維導線的軟體。目前市面上已經有可供使用的導線模擬軟體,像是 Raphael。但與元件模擬,例如Medici,相比之下,導線軟體又顯得缺乏一些功能性,例如沒有包含漏電流。針對此缺失,我們在Kappa內裝有三種漏電流模型,分別為:傅勒-諾德翰穿隧電流模型(Fowler-Nordheim tunneling current model)、普爾-夫倫克爾穿隧電流模型(Poole-Frenkel current model)、熱離子發射模型(thermionic emission model)。半導體領域的研究員們可藉由這些漏電流模型分析不同結構下它們的漏電流成份,了解基礎漏電流路徑以及在未來的半導體科技上發展出更完善的導線技術。
    對於在介電質中的電場來說這些漏電流模型是屬於非線型方程式。可以使用自洽(self-consistent)方式來求解電場(Poisson’s equation)以及漏電流,也就是得到的解會同時符合泊松方程式(Poisson’s equation)以及漏電流方程式。或者是分開求解,先解出電場,再用電場算出漏電流,稱之為後製作處理(post processing) 。這兩種方法在Kappa都可使用,本論文也包含了這兩種方式的分析與比較。Kappa還包含了多種功能,例如:多種有效率的格點方式以及內建材料標準資料庫等等。總體來說,Kappa是一個為了推進技術發展而生的,有效率且強健的導線模擬軟體。


    Contents 摘要 i Abstract ii 誌謝 iv Contents v List of Figures viii List of Tables xi Chapter 1 Introduction 1 1.1 Motivation and Purpose 1 1.2 Thesis Organization 2 Chapter 2 Program Design 4 2.1 Targeted Structures and Simulations 4 2.2 Input Format of Kappa 6 2.3 Program Structure 8 2.4 Summary 15 Chapter 3 Algorithm 16 3.1 Matrix Equation 16 3.1.1 Poisson’s equation 17 3.1.2 Kirchhoff’s Current Law 19 3.2 Boundary Condition 20 3.2.1 Mirror Boundary Condition 20 3.2.2 Nodes Touching Metal Conductors 22 3.3 Solution Methods 23 3.3.1 Conjugate Gradient (CG) Algorithm 23 3.3.2 Bi-Conjugate Gradient (bi-CG) Method 24 3.3.3 Gaussian Elimination (GE) Method 24 3.3.4 Comparison of CG and GE Methods 26 3.3.5 Newton’s Method 28 Chapter 4 Models, Calculation Methods and Functions 31 4.1 Models 31 4.1.1 Linear Models – Basic Electrical Models 31 4.1.2 Nonlinear Models – Leakage Current Models 32 4.1.3 Summary 42 4.2 Calculation Methods 42 4.2.1 Self-consistent 42 4.2.2 Post Processing 44 4.2.3 Summary 48 4.3 Functions 49 4.3.1 Creation of Objects 49 4.3.2 Options 51 4.3.3 Calculations 57 Chapter 5 Results 62 5.1 Simulation with Tunneling Current 62 5.1.1 Application of Three Leakage Current Models Simultaneously with Self-consistent Mechanism 63 5.1.2 Application of Leakage Current Models Separately with Self-consistent Mechanism 65 5.1.3 Application of Three Leakage Current Models Simultaneously with Post Processing Mechanism 67 5.1.4 Summary 69 5.2 Simulation with Floating Conductor and Dielectric 71 5.2.1 Simulation of Floating Conductors and Dielectrics Separately 71 5.2.2 Simulation with Floating Conductors and Dielectrics 75 5.2.3 Summary 77 5.3 Comparison between Kappa and Raphael 78 5.3.1 The Shapes of Items 78 5.3.2 Simulation Results, Number of Grid Points, and Processing Times 82 5.3.3 Summary 84 Chapter 6 Summary and Future Work 86 6.1 Summary 86 6.2 Future work 87 References 88 Appendix 89

    References
    [1] James D. Plummer, M.D.D., Peter B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling. Prentice Hall, 2001.
    [2] Sze, S. M. Semiconductor Devices: Physics and Technology. John Wiley & Sons Inc, 2001.
    [3] Synopsys, "Medici User Guide." Version Y-2006.06.
    [4] Yeargan, J.R. and H.L. Taylor, "The Poole-Frenkel Effect with Compensation Present," Journal of Applied Physics, vol. 39,no. 12, pp. 5600-5604, 1968.
    [5] Du Ming, et al., " An improved TDDB lifetime model of copper interconnect," Proceeding of 2009 IEEE International Conference on Electron Devices and Solid-State Circuits, Dec 2009, p. 20- 23.
    [6] Corporation, TCAD Business Unit, Fremont, CA, USA. "Raphael, Interconnect Analysis Program, Reference Manual." Version C-2009.0.
    [7] F. Chen, P. McLaughlin, J. Gambino, E. Wu, J. Demarest, D. Meatyard, and M. Shinosky, “ The Effect of Metal Area and Line Spacing on TDDB Characteristics of 45nm Low-k SiCOH Dielectrics”, Proceeding of 2007 IEEE International Reliability Physics Symposium, April 2007, pp. 382-389.
    [8] C. Zhe, K. Prasad, L. Chaoyong, J. Ning and G. Dong, "Investigation of dielectric/metal bilayer sidewall diffusion barrier for Cu/porous ultra-low-k interconnects," IEEE Transactions on Device and Materials Reliability, Vol. 5, no. 1, pp. 133-141, 2005.
    [9] M. N. Chang, Robin. C. J. Wang, C. C. Chiu and Kenneth Wu, “ An Efficient Approach to Quantify the Impact of Cu Residue on ELK TDDB ”, Proceeding of 2009 IEEE International Reliability Physics Symposium, April 2009, pp. 619-623.
    [10] David J. Griffiths, Introduction to Electrodynamics. Pearson US Imports & PHIPEs, 1996.
    [11] Hambley, Electrical Engineer Principles and Aplications. Pearson, 2008.
    [12] Luenberger, D.G., Linear and Nonlinear Programming. Kluwer Academic, 1984.
    [13] Strong, A., et al., Reliability Wearout Mechanisms in Advanced CMOS Technologies. Wiley-IEEE Press, 2009.
    [14] Müller-Merbach, H., On Round-Off Errors in Linear Programming. Springer, 1970.
    [15] F.A, P., "The Richardson constant for thermionic emission in Schottky barrier diodes," Solid-State Electronics, vol. 12, no. 2, pp. 135-136, 1969.
    [16] Chang, M.N., et al. "A comprehensive breakdown model describing temperature dependent activation energy of low-k/extreme low-k dielectric TDDB," Proceedings of International Electron Devices Meeting, 2010, Dec. 2010, pp. 800-803.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE