簡易檢索 / 詳目顯示

研究生: 張哲瑋
Jer-Wei Chang
論文名稱: 應用於平面光波電路之TM模態微光衰減器
A Micro TM-Mode Variable Optical Attenuator for Planar Lightwave Circuit applications
指導教授: 劉承賢
Cheng-Hsien Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 58
中文關鍵詞: 微機電系統平面光波電路可調變光衰減器熱致動器脊形波導
外文關鍵詞: Microelectromechanical systems (MEMS), Variable optical attenuators (VOAs), Electrothermal actuators, Rib waveguides, Planar lightwave circuits (PLCs)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於微機電技術的成熟,許多光電元件皆朝向微小化的方向製作,此亦有利於積體光學的發展,也就是能夠將許多光學元件整合於一半導體晶片上。可調變光衰減器即為光電元件之ㄧ。在光通訊中,它扮演了重要角色。其主要功能是用來控制或降低光訊號的強度。
    本論文主要提出一可調變光衰減器之新構想:結合波導以及光纖,利用線偏振光在TM 模態下之特性,藉由入射光入射到接收端角度的不同來調控光強度。而所設計之可調變光衰減器包含:光纖槽之設計、接收端波導設計、鏡面致動的設計以及利用單模光纖與漸變折射係數光纖來設計光路。在鏡面致動部份,為了使鏡面能夠有大角度的轉動(9度),我們設計V型熱致動器來推動鏡子。在可調變光衰減器設計完成後,接著進行光罩佈局及製程規劃。元件製程是利用微機電(MEMS)技術,並以SOI (silicon -on-insulator)晶片來實作出可調變光衰減器,最後進行元件量測。


    In optical transmission systems, variable optical attenuators (VOAs) are fundamental components. They play important roles in equalizing channel intensity levels in Dense Wavelength Division Multiplexing (DWDM) systems and flattening the gain spectrum of optical amplifiers.
    Variable optical attenuators based on planar lightwave circuits (PLCs) are attractive in the ability to integrate with other optical devices. A novel structure of a variable optical attenuator is proposed in this thesis. The configuration of the VOA includes a fiber groove that the single mode fiber and Grin fiber will be placed, an output waveguide, and a driven mirror with a flexible spring to fix it. The V-shape thermal actuator is designed to drive the mirror. We utilize the incident angle changes between two medium under the TM polarization to manipulate the optical power. Mask layouts and fabrications follow the device design. We use SOI (silicon -on-insulator) wafers to manufacture the VOAs by Micro-Electro-Mechanical Systems (MEMS) technology and then measure them finally.

    Chapter1 Introduction 1-1 Background -1- 1-2 Literature of Variable Optical Attenuators Using MEMS Technology -2- 1-2.1 Shutter type for Fiber Scheme -3- 1-2.2 Reflection type for Fiber Scheme -5- 1-2.3 VOAs for PLC Scheme -6- 1-3 Motivation and goals -12- Chapter2 Design Concept 2-1 Mechanism of optical energy attenuation -13- 2-1.1 Basic principle- Fresnel Equations -13- 2-1.2 Basic principle- Reflectance and Transmittance -16- 2-1.3 Working mechanism of VOA -18- 2-2 The Configuration of the Variable Optical Attenuator -22- Chapter3 Theory and Simulations 3-1 Optics -24- 3-1.1 Gaussian Beams -24- 3-1.2 ABCD Law -25- 3-1.3 Optical Fibers -26- 3-1.4 The Design of the Optical Path -27- 3-1.5 The Design of the Output Waveguide -31- 3-2 MEMS -32- 3-2.1 The manipulation of Rotated Mirrors by V-shape Thermal Actuators -32- Chapter4 Fabrication and Testing 4-1 Fabrication Processes -36- 4-1.1 Fabrication Process of VOA -36- 4-1.2 Gold Coating -40- 4-1.3 Vapor-HF Release -42- 4-2 Fabrication Results -43- 4-3 Measurements -45- 4-3.1 Measurement Setup of Rotary Mirror Using a Thermal Actuator -45- 4-3.2 Measurement Setup of Characteristic of Optics -46- 4-3.3 The Fitting of the Grin Fiber -47- 4-3.4 Measurement Results of Rotary Mirror Using a Thermal Actuator -49- 4-3.5 Measurement Results of Characteristic of Optics -51- Chapter5 Conclusion & Future Work -54- Reference -55-

    [1]Keiji Isamoto, Kazuya Kato, Atsushi Morosawa, Changho Chong, Hiroyuki Fujita, Hiroshi Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10, No. 3, pp.570-578, 2004
    [2]Young Yun Kim, Sung Sik Yun, Chang Soo Park, Jong-Hyun Lee, Yeong Gyu Lee, Hyun Ki Lee, Sang Ki Yoon, and Jun Seok Kang, “Refractive variable optical attenuator fabricated by silicon deep reactive ion etching,” IEEE Photonics Technology Letters, Vol. 16, No. 2, pp.485-487, 2004
    [3]Sungcheon Jung , Yoonshik Hong, Junghyun Lee, and Hyunkee Lee, “New micro-machined VOA for improvement of the optical characteristics,” Proc. of SPIE, Vol. 5116, pp.857-863, 2003
    [4]H. Cai, X. M. Zhang, C. Lu, A. Q. Liu, E. H. Khoo, “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photonics Technology Letters, Vol. 17, No. 2, pp.402-404, 2005
    [5]Tae-Sun Lim, Chang-Hyeon Ji, Chang-Hoon Oh, Hyouk Kwon, Youngjoo Yee, and Jong Uk Bu, “Electrostatic MEMS variable optical attenuator with rotating folded micromirror,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 10, No. 3, pp.558-562, 2004
    [6]Y.O. Noh, M.3. Yang, Y.H. Won and W.-Y. Hwaiig, “PLC-type variable optical attenuator operated at low electrical power,” Electronic Letters, Vol. 36, No. 24, pp.2032-2033, 2000
    [7]Jin Tae Kim, Choon-Gi Choi, and Hee-Kyung Sung, “Polymer planar-lightwave-circuit-type variable optical attenuator fabricated by hot embossing process,” ETRI Journal, Vol. 27, pp.122-125, 2005
    [8]Dongxiao Li, Yanwu Zhang, Liying Liu, and Lei Xu, “Low consumption power variable optical attenuator with sol-gel derived organic/inorganic hybrid materials,” Optics Express , Vol. 14, No. 13, pp.6029-6034, 2006
    [9]T. Kawai, M. Koga, M. Okuno and T. Kitohl, “PLC type compact variable optical attenuator for photonic transport network,” Electronics Letters, Vol. 34, No. 3, pp.264-265, 1998
    [10]T. Hurvitz, S. Ruschin, D. Brooks, G. Hurvitz, and E. Arad, “Variable optical attenuator based on ion-exchange technology in glass,” Journal of Lightwave Technology, Vol. 23, No. 5, pp.1918-1922, 2005
    [11]Hitoshi HATAYAMA, Kenji KOYAMA, Chisai HIROSE, Tatsuhiko SAITOH, Takeo KOMIYA, Shigeru SEMURA, Tsukuru KATSUYAMA and Naoyuki YAMABAYASHI, “Multi-channel variable optical attenuator,” Sei Technical Review, Number 55, pp28-31, 2003
    [12]Sungchul KIM, “Expanded-core planar waveguide in variable optical attenuator,” Jpn. J. Appl. Phys., Vol. 44, pp.6042-6046, 2005
    [13]C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 1, pp.18-25, 1999
    [14]Cornel Marxer, Patrick Griss, and Nicolaas F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photonics Technology Letters, Vol. 11, No. 2, pp.233-235, 1999
    [15]C. Marxer, B. de Jong, and N. F. de Rooij, “Comparison of MEMS variable optical attenuator designs,” in Conf. Dig. IEEE/LEOS Int.Conf. Optical MEMS, pp.189–190, 2002
    [16]Sean M. Garner and Steve Caracci, “Variable optical attenuator for large-scale integration,” IEEE Photonics Technology Letters , Vol. 14, No. 11, pp.1560-1562, 2002
    [17]Chihchung Chen, Chengkuo Lee, and Yen-Jyh Lai, “Novel VOA using in-plane reflective micromirror and off-axis light attenuation,” IEEE Optical Communications, pp.16-20, 2003
    [18]Aymen Bashir, Pekka Katila, Nicolas Ogier, Bassam Saadany, Diaa A. Khalil, “A MEMS-based VOA with very low PDL,” IEEE Photonics Technology Letters, Vol. 16, No. 4, pp.1047-1049, 2004
    [19]Chengkuo Lee, Yu-Shen Lin, “A new micromechanism for transformation of small displacements to large rotations for a VOA,” IEEE Sensors Journal, Vol. 4, No. 4, pp.503-509, 2004
    [20]K. lshikawa and Q. Yu, “An integrated AWG multi/demultiplexer with MEMS-VOA shutters,” Inter Society Conference on Thermal Phenomena, pp.523-528, 2004
    [21]Xuhan Dai, Xiaolin Zhao, Guifu Ding, Bingchu Cai, “Electromagnetic MEMS eight-channel variable optical attenuator array,” Proc. of SPIE, Vol. 5641, pp.1-6, 2004
    [22]R R A Syms, H Zou, J Stagg and H Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng., pp.1700–1710, 2004
    [23]Chengkuo Lee, “Arrayed variable optical attenuator using retro-reflective MEMS mirrors,” IEEE Photonics Technology Letters, Vol. 17, No. 12, pp.2640-2642, 2005
    [24]Chengkuo Lee, Yen-Jyh Lai, Chia-YuWu, J Andrew Yeh and Ruey-Shing Huang, “Feasibility study of self-assembly mechanism for variable optical attenuator,” J. Micromech. Microeng., pp.55–62, 2005
    [25]Che-Heung Kim and Yong-Kweon Kim, “MEMS variable optical attenuator using a translation motion of 45◦ tilted vertical mirror,” J. Micromech. Microeng., pp.1466–1475, 2005
    [26]Min-Cheol Oh, Su-Hong Cho, Young-Ouk Noh, Hyung-Jong Lee, Jung-Jin Joo, and Myung-Hyun Lee, “Variable optical attenuator based on large-core single-mode polymer waveguide,” IEEE Photonics Technology Letters, Vol. 17, No. 9, pp.1890-1892, 2005
    [27]Chengkuo Lee, “A MEMS VOA using electrothermal actuators,” Journal of Lightwave Technology, Vol. 25, No. 2, pp.490-498, 2007
    [28]Eugene Hecht, “OPTICS (4ed),” Addison Wesley
    [29]S.O. Kasap, “Optoelectronics and photonics: principles and practices,” Prentice-Hall, NJ, 2001
    [30]Bahaa E.A. Saleh, Malvin Carl Teich, “Fundamentals of photonics,” John Wiley& Sons, Inc.
    [31]Michael Zickar, “MEMS based optical cross connects for fiber optical communication,” 2006
    [32]Chun-Jen Weng, Jerwei Hsieh, Chih-Hsien Yao, “The implementation of arcing-based and grin-based fiber lens,” 科儀新知第二十八卷第一期95,8
    [33]R. Soref, J. Shmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2 ,” J. Quantum. Electron., Vol. 27, pp.1971–1974, 1991
    [34]Souren P. Pogossian, Lili Vescan, and Adrian Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” Journal of Lightwave Technology, Vol.16, No.10, pp.1851-1853, 1998
    [35]J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, P. Sewell, “The single-mode condition for silicon-on-insulator optical rib waveguides with large cross section,” Journal of Lightwave Technology, Vol. 22, No. 8, pp.1923-1929, 2004
    [36]Kevin R. Cochran, Lawrence Fan, Don L. DeVoe, “High-power optical microswitch based on direct fiber actuation,” Sensors and Actuators, 2004
    [37]John M Maloney1, David S Schreiber and Don L DeVoe, “Large-force electrothermal linear micromotors,” J. Micromech. Microeng., pp.226–234, 2004
    [38]Chengkuo Lee and Chia-YuWu, “Study of electrothermal V-beam actuators and latched mechanism for optical switch,” J. Micromech. Microeng., pp.11–19, 2005
    [39]Yamato FUKUTA, Hiroyuki FUJITA and Hiroshi TOSHIYOSHI, “Vapor hydrofluoric acid sacrificial release technique for micro electro mechanical systems using labware,” Jpn. J. Appl. Phys., Vol. 42, pp.3690-3694, 2003

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE