簡易檢索 / 詳目顯示

研究生: 李本元
Li, Ben-Yuan
論文名稱: 以氟標記進行蛋白質固定化
Protein immobilization on solid support by fluorous tag
指導教授: 林俊成
Lin, Chun-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 127
中文關鍵詞: 氟標記
外文關鍵詞: fluorous, NCL, intein
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氟化學為近年快速發展的領域,其特性為氟化合物與氟化合物之間有很強的作用力。這個特性可以用來抑制蛋白質的非專一性吸附;因此本論文結合 intein 蛋白質表達系統、Native Chemical Ligation(NCL)反應機制以及氟化學,將蛋白質專一性的固化在奈米粒子和晶片上。目標蛋白-麥芽糖結合蛋白和綠色螢光蛋白以 intein 蛋白質表達系統表現,之後透過 NCL 的方式,將含有乙二醇的氟化物與蛋白質的C-端鍵結。C-端修飾氟標記的蛋白質,可透過簡單混合,固化在固體載體上。C-端修飾氟標記的蛋白質可以專一性的固化在氟標記磁性奈米粒子和氟晶片上,未修飾氟的蛋白質則不能固化在氟晶片和氟標記磁性奈米粒子,證實氟-氟之間的特殊作用力可有效降低非專一性吸附的發生。


    總目錄 中文摘要…………………………………………………………………I 英文摘要………………………………………………………………...II 總目錄…………………………………………………………………..III 圖表目錄……………………………………………………………VIII 表目錄 X 流程圖目錄 XI 縮寫表…………………………………………………………………XII 第一章 序論 1 1.1. 蛋白質固定化的重要性 1 1.2. 蛋白質固定化的方法 1 1.2.1. Bioorthogonal Chemistry……………………………………….3 1.2.2. 以融合蛋白技術發展蛋白質的生物結合 4 1.2.2.1. 融合蛋白技術應用於非共價鍵性的生物結合 5 1.2.2.2. 融合蛋白技術應用於位向專一且共價鍵性的生物結合 6 1.3. 蛋白質固定化的載體 8 1.4. 蛋白質固定化的問題 10 1.5. 氟化學(Fluorous Chemistry) 11 1.5.1. 氟分離技術(Fluorous Separation Technology)……..…….13 1.5.1.1. F-SPE(Fluorous Solid-Phase Extraction) 14 1.5.1.2. F-LLE(Fluorous Liquid-Liquid Extraction) 16 1.5.1.3. F-HPLC 18 1.5.1.4. 矽膠管柱層析 18 1.6. 氟化學在生物分子上的應用 19 1.7. 研究目的與動機 21 第二章 實驗結果與討論 22 2.1. 化學合成實驗 22 2.1.1. 合成半胱胺酸-氟標記化合物 22 2.1.2. 合成半胱胺酸-精胺酸-氟標記化合物 23 2.1.3. 合成第二代半胱胺酸-精胺酸-氟標記化合物 26 2.1.4. 合成第三代半胱胺酸-精胺酸-氟標記化合物 29 2.1.5. 合成Maltose-Biotin..………………………………………..31 2.2. 以大腸桿菌誘導表現麥芽糖結合蛋白和綠色螢光蛋白 33 2.2.1. 麥芽糖結合蛋白和綠色螢光蛋白之表達及純化 33 2.2.2. 蛋白質之 SDS-PAGE 膠體電泳分析 35 2.2.2.1 麥芽糖結合蛋白之 SDS-page 膠體電泳分析 35 2.2.2.2 綠色螢光蛋白之 SDS-page 膠體電泳分析 36 2.3. 麥芽糖結合蛋白和綠色螢光蛋白之修飾 37 2.3.1. 麥芽糖結合蛋白和綠色螢光蛋白的 C-端修飾 37 2.3.1.1. 含有氟標記的麥芽糖結合蛋白在氟晶片上非專一性吸附的探討 39 2.3.1.2. 含有氟標記的綠色螢光蛋白在氟晶片上非專一性吸附的 探討 42 2.4. 功能化磁性奈米粒子之製備 44 2.4.1. 氧化鐵磁性奈米粒子及含氟標記磁性奈米粒子 44 2.4.2. 含氟標記的功能化磁性奈米粒子的粒徑大小之探討 46 2.4.3. 氟標記磁性奈米粒子之沖洗條件探討 49 2.4.4. 蛋白質固化在氟標記磁性奈米粒子 52 2.4.4.1. 氟標記磁性奈米粒子之專一性吸附探討 52 2.4.4.2. 氟標記磁性奈米粒子之非專一性吸附探討 53 第三章 實驗材料與方法 57 3.1. 實驗材料 57 3.1.1. 實驗用生化材料 57 3.1.2. 細菌培養基 58 3.1.3. 實驗用有無機藥品 58 3.2. 試驗分析儀器 60 3.3. 麥芽糖結合蛋白質和綠色螢光蛋白質之表達及純化 61 3.3.1. 麥芽糖結合蛋白質和綠色螢光蛋白質基因表現之誘導 61 3.3.2. 蛋白質粗抽取液之取得 61 3.3.3. 包涵體中麥芽糖結合蛋白質及綠色螢光蛋白質之萃取 62 3.3.4. 麥芽糖結合蛋白質及綠色螢光蛋白質之純化 63 3.3.5. 聚丙烯醯胺膠體電泳 64 3.3.5.1. Tris – Glycine SDS - PAGE 64 3.3.5.2. 聚丙烯醯胺膠片的製作 66 3.3.6. 蛋白質定量法: 67 3.3.6.1. Bradford 分析法 67 3.3.6.2. BCA 分析法 ( bicinchoninc acid procedure ) 68 3.4. 麥芽糖結合蛋白質和綠色螢光蛋白質之修飾 70 3.5. 蛋白質固化在微陣列晶片 70 3.5.1. 麥芽糖結合蛋白固化在微陣列晶片 70 3.5.2. 綠色螢光蛋白固化在微陣列晶片 71 3.6. 功能化磁性奈米粒子之製備 72 3.6.1. 氧化鐵磁性奈米粒子 72 3.6.2. 氟標記功能化磁性奈米粒子 72 3.7. 氟標記功能化磁性奈米粒子性質 73 3.7.1. 水溶性 73 3.7.2. 粒徑大小 73 3.7.3. 沖洗條件 73 3.7.4. 蛋白質固化在氟標記磁性奈米粒子 75 3.8. 化學合成實驗 75 3.8.1. 一般實驗方法 75 3.8.2. 合成實驗步驟及光譜資料 78 參考文獻 96 附圖目錄………………………………………………………………105 圖目錄 圖1-1 以蛋白質表面親核性的胺基酸支鏈進行生物結合。 2 圖1-2 酮基及醛基與聯氨或羥胺類化合物的反應產物。 3 圖1-3 以疊氮化物進行生物分子連結。 4 圖1-4 Ligand - receptor pair 的生物結合方法。 6 圖1-5 Native Chemical Ligation 反應機制。 7 圖1-6 Expressed Protein Ligation結合幾丁質結合區域以純化目標蛋白之作用機制。 8 圖1-7 FBS在化學反應上的應用。 11 圖1-8 氟矽膠的結構。 14 圖1-9 改變MeOH濃度梯度對化合物分離的情形。 14 圖1-10 F-SPE 和反相 F-SPE 在分離過程中的差別。 15 圖1-11 F-LLE的分離過程。 17 圖1-12 F-LLE分離常用的全氟溶液。 17 圖1-13 一般有機溶液的親氟性特性比較。 17 圖1-14 FMS的概念 18 圖1-15 氟化學快速純化多醣的概念。 19 圖1-16 Nimzyme 的概念。 20 圖2-1 麥芽糖結合蛋白表達及純化之 SDS-PAGE 蛋白質電泳圖。 36 圖2-2 綠色螢光蛋白表達及純化之 SDS-PAGE 蛋白質電泳圖。 37 圖2-3 MALDI-TOF 光譜結果 39 圖2-4 不同麥芽糖結合蛋白在不同生物晶片上的情形 41 圖2-5 液珠在aldehyde 和氟晶片上的情形 41 圖2-6 不同麥芽糖結合蛋白在aldehyde 和氟晶片螢光強度的比較 42 圖2-7 綠色螢光蛋白和修飾上氟標記的綠色螢光蛋白點在氟晶片上的結果 43 圖2-8 不同比例的mPEG/氟標記磁性奈米粒子溶在水中的情形 46 圖2-9 氟磁性奈米粒子和含有胺基的氟化物交互作用後的情形 46 圖2-10 以DLS測試不同比例氟標記磁性奈米粒子的粒徑大小比較圖 47 圖 2-11 不同比例mPEG/氟標記的磁性奈米粒子在甲醇溶液中測得的 DLS 圖 48 圖2-12 氟磁性奈米粒子在不同沖洗條件下的情形 52 圖2-13 氟標記磁性奈米粒子專一性吸附之 SDS-PAGE電泳圖。 53 圖2-14 氟標記磁性奈米粒子非專一性吸附之 SDS-PAGE電泳圖。 54 表目錄 表1-1 重氟化物和輕氟化物的差異......................................................13 表1-2 F-SPE和反相 F-SPE的差別及比較........................................16 表2-1 去保護條件..................................................................................25 表2-2 隔兩個碳氟標記的合成條件......................................................26 表2-3 以不同還原劑去除 StBu............................................................28 表2-4 氟標記磁性奈米粒子沖洗條件..................................................50 表3-1 沖洗氟標記磁性奈米粒子溶液..................................................74 表3-2 常用的氟標準試劑......................................................................77 流程圖目錄 流程2-1 合成半胱胺酸-氟標記化合物.................................................23 流程2-2 合成半胱胺酸-精胺酸-氟標記化合物....................................24 流程2-3 合成二代半胱胺酸-精胺酸-氟標記化合物............................27 流程2-4 合成三代半胱胺酸-精胺酸-氟標記化合物............................30 流程2-5 合成 maltose-biotin.................................................................32 流程2-6 麥芽糖結合蛋白和綠色螢光蛋白表達及純化流程..............34 流程2-7 intein-mediated protein ligation 方法生成c-端修飾之麥芽糖結合蛋白..............................................................................................38 流程2-8 氧化鐵磁性奈米粒子及含氟標記功能化磁性奈米粒子的製備..............................................................................................................44

    1. Wittke, S.; Dunnwald, M.; Albertsen, M.; Johnsson, N., Recognition of a subset of signal sequences by Ssh1p, a Sec61p-related protein in the membrane of endoplasmic reticulum of yeast Saccharomyces cerevisiae. Mol. Biol. Cell 2002, 13, 2223-2232.
    2. Kingsmore, S. F., Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov. 2006, 5, 310-320.
    3. Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294-1301.
    4. Drager, G.; Kiss, C.; Kunz, U.; Kirschning, A., Enzyme-purification and catalytic transformations in a microstructured PASSflow reactor using a new tyrosine-based Ni-NTA linker system attached to a polyvinylpyrrolidinone-based matrix. Org. Biomol. Chem. 2007, 5, 3657-3664.
    5. Dyal, A.; Loos, K.; Noto, M.; Chang, S. W.; Spagnoli, C.; Shafi, K. V.; Ulman, A.; Cowman, M.; Gross, R. A., Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. J. Am. Chem. Soc. 2003, 125, 1684-1685.
    6. Rossi, L. M.; Quach, A. D.; Rosenzweig, Z., Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal. Bioanal. Chem. 2004, 380, 606-613.
    7. Li, Y.; Xu, X.; Deng, C.; Yang, P.; Zhang, X., Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis. J. Proteome Res. 2007, 6, 3849-3855.
    8. Kim, Y.; Ho, S. O.; Gassman, N. R.; Korlann, Y.; Landorf, E. V.; Collart, F. R.; Weiss, S., Efficient site-specific labeling of proteins via cysteines. Bioconjug. Chem. 2008, 19, 786-791.
    9. Bernardes, G. J.; Grayson, E. J.; Thompson, S.; Chalker, J. M.; Errey, J. C.; El Oualid, F.; Claridge, T. D.; Davis, B. G., From disulfide- to thioether-linked glycoproteins. Angew. Chem. Int. Ed. 2008, 47, 2244-2247.
    10. Antos, J. M.; Francis, M. B., Transition metal catalyzed methods for site-selective protein modification. Curr. Opin. Chem. Biol. 2006, 10, 253-262.
    11. Lim, R. K.; Lin, Q., Bioorthogonal chemistry: recent progress and future directions. Chem. Commun. 2010, 46, 1589-1600.
    12. Prescher, J. A.; Bertozzi, C. R., Chemistry in living systems. Nat. Chem. Biol. 2005, 1, 13-21.
    13. Mahal, L. K.; Yarema, K. J.; Bertozzi, C. R., Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 1997, 276, 1125-1128.
    14. Sadamoto, R.; Niikura, K.; Ueda, T.; Monde, K.; Fukuhara, N.; Nishimura, S., Control of bacteria adhesion by cell-wall engineering. J. Am. Chem. Soc. 2004, 126, 3755-3761.
    15. Gaertner, H. F.; Rose, K.; Cotton, R.; Timms, D.; Camble, R.; Offord, R. E., Construction of protein analogues by site-specific condensation of unprotected fragments. Bioconjug. Chem. 1992, 3, 262-268.
    16. Zhang, J.; Campbell, R. E.; Ting, A. Y.; Tsien, R. Y., Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 2002, 3, 906-918.
    17. Lippincott-Schwartz, J.; Patterson, G. H., Development and use of fluorescent protein markers in living cells. Science 2003, 300, 87-91.
    18. Xu, M. Q.; Evans, T. C., Jr., Intein-mediated ligation and cyclization of expressed proteins. Methods 2001, 24, 257-277.
    19. Foley, T. L.; Burkart, M. D., Site-specific protein modification: advances and applications. Curr. Opin. Chem. Biol. 2007, 11, 12-19.
    20. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B., Synthesis of proteins by native chemical ligation. Science 1994, 266, 776-779.
    21. Dawson, P. E.; Kent, S. B., Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 2000, 69, 923-960.
    22. Muir, T. W.; Sondhi, D.; Cole, P. A., Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 6705-6710.
    23. Muir, T. W., Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 2003, 72, 249-289.
    24. Offer, J.; Boddy, C. N.; Dawson, P. E., Extending synthetic access to proteins with a removable acyl transfer auxiliary. J. Am. Chem. Soc. 2002, 124, 4642-4646.
    25. Wu, B.; Chen, J.; Warren, J. D.; Chen, G.; Hua, Z.; Danishefsky, S. J., Building complex glycopeptides: Development of a cysteine-free native chemical ligation protocol. Angew. Chem. Int. Ed. 2006, 45, 4116-4125.
    26. Chen, G.; Wan, Q.; Tan, Z.; Kan, C.; Hua, Z.; Ranganathan, K.; Danishefsky, S. J., Development of efficient methods for accomplishing cysteine-free peptide and glycopeptide coupling. Angew. Chem. Int. Ed. 2007, 46, 7383-7387.
    27. Wan, Q.; Danishefsky, S. J., Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 2007, 46, 9248-9252.
    28. Wan, Q.; Chen, J.; Yuan, Y.; Danishefsky, S. J., Oxo-ester mediated native chemical ligation: concept and applications. J. Am. Chem. Soc. 2008, 130, 15814-15816.
    29. Brik, A.; Ficht, S.; Yang, Y. Y.; Bennett, C. S.; Wong, C. H., Sugar-assisted ligation of N-linked glycopeptides with broad sequence tolerance at the ligation junction. J. Am. Chem. Soc. 2006, 128, 15026-15033.
    30. Brik, A.; Yang, Y. Y.; Ficht, S.; Wong, C. H., Sugar-assisted glycopeptide ligation. J. Am. Chem. Soc. 2006, 128, 5626-5627.
    31. Pentelute, B. L.; Kent, S. B., Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation. Org. Lett. 2007, 9, 687-690.
    32. Chen, J.; Wan, Q.; Yuan, Y.; Zhu, J.; Danishefsky, S. J., Native chemical ligation at valine: a contribution to peptide and glycopeptide synthesis. Angew. Chem. Int. Ed. 2008, 47, 8521-8524.
    33. Haase, C.; Rohde, H.; Seitz, O., Native chemical ligation at valine. Angew. Chem. Int. Ed. 2008, 47, 6807-6810.
    34. Crich, D.; Banerjee, A., Native chemical ligation at phenylalanine. J. Am. Chem. Soc. 2007, 129, 10064-10065.
    35. Machova, Z.; von Eggelkraut-Gottanka, R.; Wehofsky, N.; Bordusa, F.; Beck-Sickinger, A. G., Expressed enzymatic ligation for the semisynthesis of chemically modified proteins. Angew. Chem. Int. Ed. 2003, 42, 4916-4918.
    36. Noren, C. J.; Wang, J.; Perler, F. B., Dissecting the Chemistry of Protein Splicing and Its Applications. Angew. Chem. Int. Ed. 2000, 39, 450-466.
    37. Muralidharan, V.; Muir, T. W., Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat. Methods 2006, 3, 429-438.
    38. Evans, T. C., Jr.; Benner, J.; Xu, M. Q., The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J. Biol. Chem. 1999, 274, 3923-3926.
    39. Reulen, S. W.; Brusselaars, W. W.; Langereis, S.; Mulder, W. J.; Breurken, M.; Merkx, M., Protein-liposome conjugates using cysteine-lipids and native chemical ligation. Bioconjug. Chem. 2007, 18, 590-596.
    40. Lesaicherre, M. L.; Lue, R. Y.; Chen, G. Y.; Zhu, Q.; Yao, S. Q., Intein-mediated biotinylation of proteins and its application in a protein microarray. J. Am. Chem. Soc. 2002, 124, 8768-8769.
    41. Camarero, J. A.; Kwon, Y.; Coleman, M. A., Chemoselective attachment of biologically active proteins to surfaces by expressed protein ligation and its application for "protein chip" fabrication. J. Am. Chem. Soc. 2004, 126, 14730-14731.
    42. Kwon, Y.; Coleman, M. A.; Camarero, J. A., Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew. Chem. Int. Ed. 2006, 45, 1726-1729.
    43. Brennan, J. L.; Hatzakis, N. S.; Tshikhudo, T. R.; Dirvianskyte, N.; Razumas, V.; Patkar, S.; Vind, J.; Svendsen, A.; Nolte, R. J.; Rowan, A. E.; Brust, M., Bionanoconjugation via click chemistry: The creation of functional hybrids of lipases and gold nanoparticles. Bioconjug. Chem. 2006, 17, 1373-1375.
    44. You, C. C.; Agasti, S. S.; De, M.; Knapp, M. J.; Rotello, V. M., Modulation of the catalytic behavior of alpha-chymotrypsin at monolayer-protected nanoparticle surfaces. J. Am. Chem. Soc. 2006, 128, 14612-14618.
    45. Mirzabekov, T.; Kontos, H.; Farzan, M.; Marasco, W.; Sodroski, J., Paramagnetic proteoliposomes containing a pure, native, and oriented seven-transmembrane segment protein, CCR5. Nat. Biotechnol. 2000, 18, 649-654.
    46. Willner, I.; Katz, E., Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angew. Chem. Int. Ed. 2003, 42, 4576-4588.
    47. Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J., Entrapping enzyme in a functionalized nanoporous support. J. Am. Chem. Soc. 2002, 124, 11242-11243.
    48. Kim, J.; Lee, J.; Na, H. B.; Kim, B. C.; Youn, J. K.; Kwak, J. H.; Moon, K.; Lee, E.; Park, J.; Dohnalkova, A.; Park, H. G.; Gu, M. B.; Chang, H. N.; Grate, J. W.; Hyeon, T., A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small 2005, 1, 1203-1207.
    49. Lee, J.; Lee, D.; Oh, E.; Kim, J.; Kim, Y. P.; Jin, S.; Kim, H. S.; Hwang, Y.; Kwak, J. H.; Park, J. G.; Shin, C. H.; Hyeon, T., Preparation of a magnetically switchable bio-electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angew. Chem. Int. Ed. 2005, 44, 7427-7432.
    50. Zhang, J.; Zhang, F.; Yang, H.; Huang, X.; Liu, H.; Guo, S., Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir 2010, 26, 6083-6085.
    51. Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.
    52. Gladysz, J. A., Curran, D. P., Horvath, I. T., Eds., Handbook of fluorous chemistry. Wiley-VCH: Weinheim 2004.
    53. Horvath, I. T.; Rabai, J., Facile Catalyst Separation Without Water: Fluorous Biphase Hydroformylation of Olefins. Science 1994, 266, 72-75.
    54. Curran, D. P.; Hadida, S.; He, M., Thermal allylations of aldehydes with a fluorous allylstannane. Separation of organic and fluorous products by solid phase extraction with fluorous reverse phase silica gel. J. Org. Chem. 1997, 62, 6714-6715.
    55. Luo, Z.; Williams, J.; Read, R. W.; Curran, D. P., Fluorous Boc ((F)Boc) carbamates: new amine protecting groups for use in fluorous synthesis. J. Org. Chem. 2001, 66, 4261-4266.
    56. Zhang, W.; Lu, Y.; Chen, C. H.; Curran, D. P.; Geib, S., Fluorous Synthesis of Hydantoin-, Piperazinedione-, and Benzodiazepinedione-Fused Tricyclic and Tetracyclic Ring Systems. European J. Org. Chem. 2006, 2055-2059.
    57. Dakas, P. Y.; Barluenga, S.; Totzke, F.; Zirrgiebel, U.; Winssinger, N., Modular synthesis of radicicol A and related resorcylic acid lactones, potent kinase inhibitors. Angew. Chem. Int. Ed. 2007, 46, 6899-6902.
    58. Luo, Z.; Zhang, Q.; Oderaotoshi, Y.; Curran, D. P., Fluorous mixture synthesis: a fluorous-tagging strategy for the synthesis and separation of mixtures of organic compounds. Science 2001, 291, 1766-1769.
    59. Zhang, Q.; Rivkin, A.; Curran, D. P., Quasiracemic synthesis: concepts and implementation with a fluorous tagging strategy to make both enantiomers of pyridovericin and mappicine. J. Am. Chem. Soc. 2002, 124, 5774-5781.
    60. Curran, D. P.; Zhang, Q.; Richard, C.; Lu, H.; Gudipati, V.; Wilcox, C. S., Total synthesis of a 28-member stereoisomer library of murisolins. J. Am. Chem. Soc. 2006, 128, 9561-9573.
    61. Curran, D. P.; Moura-Letts, G.; Pohlman, M., Solution-phase mixture synthesis with fluorous tagging en route: total synthesis of an eight-member stereoisomer library of passifloricins. Angew. Chem. Int. Ed. 2006, 45, 2423-2426.
    62. Montanari, V.; Kumar, K., Just add water: A new fluorous capping reagent for facile purification of peptides synthesized on the solid phase. J. Am. Chem. Soc. 2004, 126, 9528-9529.
    63. Miura, T.; Goto, K.; Waragai, H.; Matsumoto, H.; Hirose, Y.; Ohmae, M.; Ishida, H.; Satoh, A.; Inazu, T., Rapid oligosaccharide synthesis using a fluorous protective group. J. Org. Chem. 2004, 69, 5348-5353.
    64. Carrel, F. R.; Geyer, K.; Codee, J. D.; Seeberger, P. H., Oligosaccharide synthesis in microreactors. Org. Lett. 2007, 9, 2285-2288.
    65. Mizuno, M.; Goto, K.; Miura, T., Fluorous glycopeptide synthesis without protection of sugar hydroxy groups. Chem. Lett. 2005, 34, 426-427.
    66. Pearson, W. H.; Berry, D. A.; Stoy, P.; Jung, K. Y.; Sercel, A. D., Fluorous affinity purification of oligonucleotides. J. Org. Chem. 2005, 70, 7114-7122.
    67. Gladysz, J. A.; Curran, D. P., Introduction - Fluorous chemistry: from biphasic catalysis to a parallel chemical universe and beyond. Tetrahedron 2002, 58, 3823-3825.
    68. Jaipuri, F. A.; Pohl, N. L., Toward solution-phase automated iterative synthesis: fluorous-tag assisted solution-phase synthesis of linear and branched mannose oligomers. Org. Biomol. Chem. 2008, 6, 2686-2691.
    69. Curran, D. P.; Luo, Z. Y., Fluorous synthesis with fewer fluorines (light fluorous synthesis): separation of tagged from untagged products by solid-phase extraction with fluorous reverse-phase silica gel. J. Am. Chem. Soc. 1999, 121, 9069-9072.
    70. Matsugi, M.; Curran, D. P., Reverse fluorous solid-phase extraction: a new technique for rapid separation of fluorous compounds. Org. Lett. 2004, 6, 2717-2720.
    71. Yu, M. S.; Curran, D. P.; Nagashima, T., Increasing fluorous partition coefficients by solvent tuning. Org. Lett. 2005, 7, 3677-3680.
    72. Chu, Q.; Yu, M. S.; Curran, D. P., New fluorous/organic biphasic systems achieved by solvent tuning. Tetrahedron 2007, 63, 9890-9895.
    73. Curran, D. P., Fluorous Chemistry in Pittsburgh: 1996-2008. J. Fluor. Chem. 2008, 129, 898-902.
    74. Zhang, F.; Zhang, W.; Zhang, Y.; Curran, D. P.; Liu, G., Synthesis and applications of a light-fluorous glycosyl donor. J. Org. Chem. 2009, 74, 2594-2597.
    75. Ko, K. S.; Jaipuri, F. A.; Pohl, N. L., Fluorous-based carbohydrate microarrays. J. Am. Chem. Soc. 2005, 127, 13162-13163.
    76. Chen, G. S.; Pohl, N. L., Synthesis of fluorous tags for incorporation of reducing sugars into a quantitative microarray platform. Org. Lett. 2008, 10, 785-788.
    77. Nicholson, R. L.; Ladlow, M. L.; Spring, D. R., Fluorous tagged small molecule microarrays. Chem. Commun. 2007, 3906-3908.
    78. Min Hong, X. Z., Zhiqiang Lu, and Jin Zhu, Nanoparticle-Based, Fluorous-Tag-Driven DNA Detection. Angew. Chem. Int. Ed. 2009, 48, 1-5.
    79. Beatrice Y.M. Collet , T. N., Marvin S. Yu , Nicola L.B. Pohl, Fluorous-based peptide microarrays for protease screening. J. Fluor. Chem. 2009, 130, 1042-1048.
    80. Northen, T. R.; Lee, J. C.; Hoang, L.; Raymond, J.; Hwang, D. R.; Yannone, S. M.; Wong, C. H.; Siuzdak, G., A nanostructure-initiator mass spectrometry-based enzyme activity assay. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 3678-3683.
    81. Maltese, M., Reductive demercuration in deprotection of trityl thioethers, trityl amines, and trityl ethers. J. Org. Chem. 2001, 66, 7615-7625.
    82. Girish, A.; Sun, H.; Yeo, D. S.; Chen, G. Y.; Chua, T. K.; Yao, S. Q., Site-specific immobilization of proteins in a microarray using intein-mediated protein splicing. Bioorg. Med. Chem. Lett. 2005, 15, 2447-2451.
    83. 郭昱瑩, α-2,3-唾液酸轉移酶之 C-端修飾與固化. 國立清華大學 碩士班論文 2008.
    84. Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680-685.
    85. Schagger, H.; von Jagow, G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166, 368-379.
    86. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
    87. Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C., Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76-85.
    88. Hungerhoff, B.; Sonnenschein, H.; Theil, F., Combining lipase-catalyzed enantiomer-selective acylation with fluorous phase labeling: a new method for the resolution of racemic alcohols. J. Org. Chem. 2002, 67, 1781-1785.
    89. Martin Braun, X. C., Otto Vostrowsky, Andreas Hirsch, Emil Endreß,; Thomas M. Bayerl, O. B., and Günter Gauglitz, Synthesis of a Biotinated Lipofullerene as a New Type of Transmembrane Anchor. Eur. J. Org. Chem. 2000, 1173-1181.
    90. Mohamed A. Ghanem , J.-M. C., Aleksandra Pinczewska , Jeremy D. Kilburn and Philip N. Bartlett Covalent modification of glassy carbon surface with organic redox probes through diamine linkers using electrochemical and solid-phase synthesis methodologies. J. Mater. Chem. 2008, 18, 4917-4927.
    91. Seibel, J.; Hellmuth, H.; Hofer, B.; Kicinska, A. M.; Schmalbruch, B., Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays. ChemBioChem 2006, 7, 310-320.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE