簡易檢索 / 詳目顯示

研究生: 陳家翔
Chen, Jia-Siang
論文名稱: 三相四線式多階層模組化併網型轉換器
Grid-Connected Three-Phase Four-Wire Modular Multilevel Converter
指導教授: 吳財福
Wu, Tsai-Fu
口試委員: 陳建富
Chen, Jiann-Fuh
林景源
Lin, Jing-Yuan
黃智方
Huang, Chih-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 89
中文關鍵詞: 分切合整數位控制交錯式脈波寬度調變模組電容穩壓多階層模組化雙向轉換器
外文關鍵詞: D-Σ digital control, interleaved PWM, cell-capacitor voltage regulation, bi-directional modular multilevel converter
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出以分切合整數位控制法(D-Σ digital control)實現多階層模組化雙向轉換器。多階層模組化轉換器廣泛應用於靜態同步補償器、高壓直流輸電、背對背系統、馬達驅動、及電池儲能系統等。
    分切合整數位控制法的主要特點是能把隨著電流大小而不同的電感值納入考量,如此一來,跟傳統的控制法相比,在相同的電感下,分切合整數位控制法能夠得到較小的電感體積。藉由使用此控制法,每一相的控制器可以精準的算出相應的責任比率,再經由交錯式脈波寬度調變,以達到電流漣波縮小的效果。本研究也建立了另一部多階層模組化轉換器,用來實現循環功能測試。主轉換器執行整流模式,穩定直流鏈電壓,而副轉換器執行併網模式,將能量饋入市電端。此外,模組電容穩壓是在分切合整數位控制法所計算出來的責任比率中加入一個微幅的微調量,來進行模組電容穩壓。
    本研究的主要貢獻包含以下幾點,第一點為採用分切合整數位控制法,此方法除了可以考慮電感值變化,也可利用此控制法得出模組電容電壓表示式,對調整模組穩壓速度及降低漣波電壓也有很大的幫助。第二點為採用中央控制器處理均流問題,把上臂與下臂直流鏈電壓感測進中央控制器裡,經由直流鏈電容穩壓公式的計算,可以得出相應的電流命令,再利用串列通訊協定,傳送給每相控制器,以達到均流效果。第三點為採用多階層架構,可以實現高壓直流傳輸。利用模組串接,可以有效地提高直流鏈電壓,如此一來,在遠距離直流微電網傳輸過程中,可以選擇較細傳輸導線。最後,本研究實作一組主、副多階層模組化雙向轉換器系統,並經由實測結果驗證本論文所提出的控制法則。


    This research proposes how to use division-summation (D-Σ) digital control to realize modular multilevel converters. Modular multilevel converters (MMCs) are widely used in STATCOM, HVDC, back-to-back power transfer systems, motor driving and battery storage systems.
    The main characteristic of D-Σ digital control is that it can take inductance variation into consideration when inductor current changes. Compared with conventional control laws, D-Σ digital control can reduce core volume under the same inductance. Each controller in a phase can precisely determine control law for current tracking, and through interleaving PWM, current ripple can be reduced. In this research, we also implement another modular multilevel converter to realize power recycling test. One converter works in rectification mode to regulate dc-bus voltage, the other works in grid-connection mode to inject power into the grid. Besides, D-Σ digital control introduces a small duty ratio modulation to achieve cell-capacitor voltage regulation.
    There are several major contributions in this research. The first one is to adopt D-Σ digital control. The advantages of using this control law are that we can not only take the inductance variation into consideration, but can obtain a cell voltage expression, which helps a lot in regulating cell voltage and reducing voltage ripple. Secondly, we adopt a central controller to deal with current sharing. By sensing the upper and lower dc-bus voltages into the central controller, current commands can be determined correspondingly. Then, the command is transfered to each-phase controller through a serial communication interface to realize equal current sharing. Thirdly, we adopt the MMC to realize two HVDCs and to effectively improve the dc-bus voltage regulation. It is useful in reducing diameter of transmission line for a long-distance dc microgrid.
    Finally, two bi-directional modular multilevel converters have been implemented, and measured results have verified the current tracking control law and voltage regulation schemes.

    摘 要 I Abstract II 目 錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 2 1.2.1多階層轉換器拓撲結構 2 1.2.2多階層模組化轉換器 4 1.3論文大綱 6 第二章 多階層模組化轉換器架構與動作原理 7 2.1轉換器系統架構 7 2.2 模組電路架構 8 2.3多階層模組化轉換器電路架構 8 2.4 模組動作原理 9 2.5 系統動作原理 11 2.5電流追蹤控制 11 2.5.1 電流命令的抉擇 11 2.5.2 電流追蹤控制法-分切合整數位控制 12 2.5.3 載波調變法 16 第三章 電壓穩壓、平衡與均流控制 19 3.1直流鏈電容穩壓控制 19 3.2直流鏈電容電壓平衡控制 22 3.3三相電流均流控制 25 3.4模組電容穩壓控制 26 3.5模組電容電壓表示式 28 第四章 周邊電路設計 30 4.1輔助電源 30 4.1.1 IC UC3843 PWM控制核心 31 4.1.2 返馳式轉換器 32 4.2模組壓電壓回授電路 34 4.3開關驅動電路 34 4.4直流鏈電壓回授電路 36 4.5市電電壓回授電路 37 4.6電流回授電路 38 4.7硬體保護電路 39 4.8輔助電源自我檢測電路 40 4.9緊急停止開關電路 42 4.10串列傳輸介面電路 42 第五章 韌體規劃 45 5.1微控制器介紹 46 5.2程式流程 48 5.2.1主程式流程 49 5.2.2 A/D中斷副程式 49 5.2.3 保護副程式 54 第六章 模擬與實作驗證 57 6.1電器規格 57 6.2實務考量 58 6.2.1開關選擇及特性 58 6.2.2電感值變化 60 6.2.3開關死區時間配置 61 6.2.4電流峰值及零交越開關導通與截止情形 62 6.2.5切換雜訊干擾 65 6.3模擬與實作 67 6.3.1整流模式模擬與實作結果 67 6.3.2市電併網模式模擬與實作結果 73 6.3.3功率元件溫升曲線 79 6.3.4三相實作結果 80 第七章 結論與未來研究方向 85 7.1結論 85 7.2未來研究方向 86 參考文獻 87

    [1] 張心紜,參與自己的未來,經濟部能源局能源報導,2014年01月。網站:
    http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=201401&Page=8
    [2] 吳財福教授精緻電力電子應用研究室(EPEARL) 網站:
    http://astyfc.wixsite.com/tfwu2013/now2013
    [3] T. F. Wu, Y. Y. Chang, C. H. Chang, T. C. Zou and Y. R. Chang, "Current improvement for D- digital controlled three-phase bi-directional inverter with wide inductance variation," 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Taipei, 2015, pp. 1-6.
    [4] L. D. S. Bezerra, R. P. Torrico-Bascopé and C. M. T. Cruz, "Control strategy for multifunctional, three-phase, four wire, AC-DC boost converter," 2013 Brazilian Power Electronics Conference, Gramado, 2013, pp. 399-405.
    [5] B. R. Lin and T. Y. Yang, "Experimental verification of three-phase four-wire current-regulated PWM converter," in IEE Proceedings - Electric Power Applications, vol. 152, no. 3, pp. 677-685, 6 May 2005
    [6] A. Lesnicar and R. Marquardt, "An innovative modular multilevel converter topology suitable for a wide power range," 2003 IEEE Bologna Power Tech Conference Proceedings,, 2003, pp. 6 pp. Vol.3-.
    [7] 劉鐘淇,宋強,劉文華.基於模組化多電平變流器的輕型直流輸電系統[J].電力系統自動化,2010,34(2):53-58。
    [8] 管敏淵,徐政.模組化多電平換流器型直流輸電的建模與控制.電力系統自動化,2010,34(19):64-68。
    [9] M. Malinowski, K. Gopakumar, J. Rodriguez and M. A. Perez, "A Survey on Cascaded Multilevel Inverters," in IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2197-2206, July 2010.
    [10] Jih-Sheng Lai and Fang Zheng Peng, "Multilevel converters-a new breed of power converters," in IEEE Transactions on Industry Applications, vol. 32, no. 3, pp. 509-517, May/Jun 1996.
    [11] E. Behrouzian, M. Bongiorno and H. Z. De La Parra, "An overview of multilevel converter topologies for grid connected applications," 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, 2013, pp. 1-10.
    [12] S. Kouro et al., "Recent Advances and Industrial Applications of Multilevel Converters," in IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553-2580, Aug. 2010.
    [13] J. Rodriguez, Jih-Sheng Lai and Fang Zheng Peng, "Multilevel inverters: a survey of topologies, controls, and applications," in IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724-738, Aug 2002.
    [14] M. Carpaneto, M. Marchesoni and L. Vaccaro, "A New Cascaded Multilevel Converter Based on NPC Cells," 2007 IEEE International Symposium on Industrial Electronics, Vigo, 2007, pp. 1033-1038.
    [15] S. A. Khajehoddin, J. Ghaisari, A. Bakhshai and P. K. Jain, "A novel modeling and analysis of capacitor-clamped multilevel converters," 2006 37th IEEE Power Electronics Specialists Conference, Jeju, 2006, pp. 1-5.
    [16] D. Karwatzki; A. Mertens, "Generalized Control Approach for a Class of Modular Multilevel Converter Topologies," in IEEE Transactions on Power Electronics , vol.PP, no.99, pp.1-1
    [17] H. Akagi, "Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC)," in IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3119-3130, Nov. 2011.
    [18] K. Shi, F. Shen, D. Lv, P. Lin, M. Chen, and D. Xu, “A novel start-up scheme for modular multilevel converter,” in Proc. Conf. IEEE Energy Convers. Congr, Expo, 2012, pp. 4180–4187.
    [19] UC3843 Group Datasheet, Fairchild, 2002.
    [20] 郭志城,多階層模組化雙向轉換器研製,國立清華大學電機工程研究所碩士論文,2016年7月。
    [21] RX63T Group datasheet Rev. 2.00, Renesas, 2013.

    QR CODE