研究生: |
黃建維 Huang, Jian-Wei |
---|---|
論文名稱: |
高品質石墨烯之化學氣相沉積成長與基礎電性之研究 High quality few-layer graphene grown by Chemical Vapor Deposition and electric properties |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 單層石墨 、化學氣相沉積 、穿隧式電子顯微鏡 、氧氣電漿 、高溫退火 |
外文關鍵詞: | Graphene, Chemical Vapor Deposition, TEM, Oxygen plasma, Annealing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今積體電路設計強調元件縮小化的前提下,微影技術將會面臨許多發展瓶頸,以及在閘極長度 (gate length) 縮小至僅數十奈米的情形下,各種難以控制的物理現象也逐漸浮現。在這種由上而下 (Top-down) 的傳統縮小方式已無法突破極限的情況下,直接成長奈米結構的材料視為下一世代半導體技術的主要課題。例如:奈米碳管 (carbon nanotubes)、奈米線 (nanowires),或是近年來相當熱門的單層石墨 (graphene) 等低維度 (Low-dimensional) 奈米結構,將這些奈米結構以積木 (block) 堆疊的組合方式構成電子元件,也就是所謂的由下而上 (Bottom-up) 建構技術,正是科學家積極研究發展的方向。單層石墨之所以能夠快速地在國際上掀起研究的熱潮,除了承續先前奈米碳管的研究能量之外,乃因為它是自然界中目前唯一能夠找到穩定存在的單一原子層二維電子系統,它獨特的電子結構給予科學界一個探索未知領域的重要平台,也提供奈米電子領域一個全新的思考方向。
目前製備單層石墨的方式最簡單的是利用機械剝離 (mechanical exfoliation) 的方式,但是這種方法不僅耗時,需要大量人力之外,由高定向熱解石墨 (HOPG) 剝離的石墨面積相對於現今業界晶圓尺寸大小的半導體製程難以帶到應用層面,因此本論文嘗試利用最常見的化學氣相沈積法 (Chemical vapor deposition, CVD),來發展出簡單快速的單層石墨成長技術,並且逐漸改善問題,我們以鎳錠 (Ni pillar) 塊材做為催化劑以及現下最火紅的單層石墨成長金屬基材-銅分別成長單層石墨,為了更加瞭解石墨的成長機制,我們利用不同的分析儀器,像是拉曼光譜分析、掃瞄式電子顯微鏡、原子力顯微鏡等來幫助我們研究,且可以穩定地控制成長大面積的高品質且高均勻性單層石墨。
為了更加瞭解單層石墨元件的電學特性,在不同成長機制下,我們分析了單層石墨元件電學性質表現,像是電子遷移速率的比較,電荷中性迪拉克點的位置比較。對於基本的單層石墨電性有了基本的了解之後,我們則想要就由一些特殊的處理,讓本質的石墨有著類似於傳統以矽為基材摻雜效應 (doping effct)。配合著與發現奈米碳管的日本學者 Sumio. Iijima 的研發團隊合作的穿透式電子顯微鏡 (TEM) 技術,分析所量測的單層石墨,我們瞭解到以鎳為催化劑成長出的石墨烯其堆疊方式的獨特性質: AA 堆疊 (AA stacking),以銅為金屬基板成長出晶格中低缺陷且只有一個原子層的單層石墨,再經過高溫爐管的退火去清除製程中無可避免的非晶碳、帶電與否的沉積物,並且修復單層石墨晶格成長過程中的缺陷等等,以及透過一系列的測試去增進接觸電阻 (contact resistance),最後我們將看到其電學性質的改善。
在元件製作部分,鎳為基材的成長系統一般都是透過酸性溶液蝕刻催化劑,而銅為基材的成長系統則使用氯化鐵(FeCl$_{3}$)為蝕刻液,再用人力將石墨轉移至其他的基板上。由於將本實驗所成長出的單層石墨其顏色與轉移後的基板對比鮮明,利用光學影像即可非常容易地在 AutoCAD 定義其位置,這種製備單層石墨的方式穩定且可得到大面積、高品質跟均勻性的薄膜,不僅符合晶圓尺寸的需求,對於電學特性也優於傳統主流的矽。也就是說,此種有機材料若能克服目前在應用層面的問題,未來有機會能夠取代目前的矽,大量生產單層石墨元件,進而成為半導體科技的主流。
[1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor tridoe”, {Phys. Rev.}, vol. 74, p. 230, 1948.
[2] R. Satio, G. Dresselhaus and M.S. Dresselhaus, {Physical Properties of Carbon Nanotubes}, Imperial College Press, London, 1998.
[3] B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point”, {Phys. Rev. B}, vol. 74, p. 075404, 2006.
[4] L. Liu and Z. Shen, “Bandgap engineering of graphene: A density functional theory study”, {Appl. Phys. Lett.}, vol. 95, p. 252104, 2009.
[5] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene”, {Science}, vol. 74, p. 644, 2007.
[6] Y. Zhang, YW. Tan, H. L. Stormer and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene”, {Nature}, vol. 438, p. 201, 2005.
[7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, {Nature}, vol. 438, p. 197, 2005.
[8] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price1 and J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, {Nature}, vol. 458, p. 872, 2009.
[9] L. Jiao, L. Zhang, X. Wang, G. Diankov and H. Dai, “Narrow graphene nanoribbons from carbon nanotubes”, {Nature}, vol. 458, p. 877, 2009.
[10] 成會明, “奈米碳管”, 2006.
[11] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim and K. S. Novoselov, “Graphene-Based Liquid Crystal Device”, {Nano Lett.}, vol. 8, p. 1704-1708, 2008.
[12] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, {Science}, vol. 306, p. 666-669, 2004.
[13] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, {Science}, vol. 312, p. 1191-1196, 2006.
[14] J. H. Chen, C. Jang, S. X. M. I. and Fuhrer, M. S., “Intrinsic and extrinsic performance limits of graphene devices on SiO$_{2}$”, {Nature Nanotech.}, vol. 3, p. 206-209, 2008.
[15] YM. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer and P. Avouris, “Operation of Graphene Transistors at Gigahertz Frequencies”, {Nano Lett.}, vol. 9, p. 422-426, 2009.
[16] YM. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, HY. Chiu, A. Grill and P. Avouris, “100-GHz Transistors from Wafer-Scale Epitaxial Graphene”,{Science}, vol. 327, p. 662, 2010.
[17] J. Hass, W. A. de Heer and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene”, {J. Phys.: Condens. Matter}, vol. 20, p. 323202, 2008.
[18] 洪連輝, 劉立基, 魏榮君, “固態物理學導論”, 第七版.
[19] D. D. L. Chung, “Review graphite”, {Journal of Materials Science}, vol. 37, p. 1475, 2002.
[20] S. Latil and L. Henrard, “Charge Carriers in Few-Layer Graphene Films”,{Phys. Rev. Lett.}, vol. 97, p. 036803, 2006.
[21] P. Blakea, E. W. Hil, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”,{Appl. Phys. Lett.}, vol. 91, p. 063124, 2007.
[22] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial graphene”, {Solid State Communications}, vol. 143, p. 92-100, 2007.
[23] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, {Science}, vol. 312, p. 1191-1196, 2006.
[24] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, “Highly conducting graphene sheets and Langmuir-Blodgett films”, {Nature Nanotech.}, vol. 3, p. 538-542, 2008.
[25] G. Eda, G. Fanchini and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”,{Nature Nanotech.}, vol. 3, p. 270-274, 2008.
[26] X. Li, W.i Cai,. J. An, S.g Kim, J. Nah, D. Y, R. Piner, A. Velamakanni, I. Jung, E.l Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, {Science}, vol. 324, p. 1312-1314, 2009.
[27] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, {Phy. Rev. Lett.}, vol. 97, p. 187401, 2006.
[28] J. C. Meyer, A. K. Geim, M. I. Katsnelsond, K. S. Novoselovc, D. Obergfelle, S. Rothe, C. Girita and A. Zettla, “On the roughness of single- and bi-layer graphene membranes”, {Solid State Communications}, vol. 143, p. 101-109, 2007.
[29] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, {Appl. Phys. Lett.}, vol. 93, p. 113103, 2008.
[30] D. Laplazea, L. Alvareza, T. Guillardb, J. M. Badieb and G. Flamantb, “Carbon nanotubes: dynamics of synthesis processes”, {Carbon}, vol. 40, p. 1621-1634, 2002.
[31] T. B. Massalski, D. E. Laughlin, D. J. Chakrabarti and P. R. Subramanian, {Phase diagrams of binary copper alloys}, Monograph series on alloy phase diagrams, vol. 10, p. 109, 1994.
[32] G.A. L'opez and E.J. Mittemeijer, “The solubility of C in solid Cu”, {Scripta Materialia}, vol. 51, Issue 1, p. 1-5, 2004.
[33] Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai and C. Oshima, “Atomic structure of monolayer graphite formed on Ni (111)”, {Surface Science,} vol. 374, p. 61-64, 1997.
[34] G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, “First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni (111) interface”, {Phy. Rev. B}, vol. 71, p. 075402, 2004.
[35] A. Reina, X. Jia, J Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, {Nano Lett.}, vol. 9, p. 30-35, 2009.
[36] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, {Nature}, vol. 457, p. 706-710, 2009.
[37] W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie and A. Zettl, “A direct transfer of layer-area graphene”, {Appl. Phys. Lett.}, vol. 96, p. 113102, 2010.
[38] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, {Solid State Communications}, vol. 143, p. 47-57, 2007.
[39] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, YM. Lin, G. S. Tulevski, J. C. Tsang and P. Avouris, “Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices”, {Nano Lett.}, vol. 9, p. 388-392, 2009.
[40] F. Xia, D. B. Farmer, YM. Lin and P. Avouris, “Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature”, {Nano Lett.}, vol. 10, p. 715-718, 2010.
[41] M. Y. Han, B. O¨zyilmaz, Y. Zhang and P. Kim, “Energy Band-Gap Engineering of Graphene Nanoribbons”, {Phys. Rev. Lett.}, vol. 98, p. 206805, 2007.
[42] N. Ferralis, R. Maboudian and Carlo Carraro, “Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001)”, {Phys. Rev. Lett.}, vol. 101, p. 156801, 2008.