簡易檢索 / 詳目顯示

研究生: 劉祐麟
Liu, Yu-Lin
論文名稱: Bi-Sb-Te/金屬界面接觸電阻及接觸熱阻之量測與特性分析
Characterization of Electrical and Thermal Contact Resistances of Bi-Sb-Te/metal Interfaces
指導教授: 廖建能
Liao, Chien-Neng
口試委員: 饒達仁
Yao, Da-Jeng
周雅文
Chou, Ya-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 72
中文關鍵詞: 熱電薄膜接觸電阻接觸熱阻TLM法3ω法
外文關鍵詞: thin-film thermoelectric, electrical contact resistance, thermal contact resistance, transmission-line-model, 3ω techniques
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銻化鉍系列化合物為目前室溫下熱電性質表現最佳的材料系統,且普遍應用於商用熱電致冷器模組中。而薄膜型熱電元件組裝中,熱電材料與金屬間所產生的額外接觸電阻與熱阻由於元件尺寸的縮小而不能忽略,這些阻抗將會造成熱電元件效能的低落。因此本研究的主題在於熱電材料與金屬接觸界面性質分析。在本研究中,熱電材料與金屬間接觸電阻率將以TLM(transmission-line-model)方法來量測,而接觸熱阻將以3ω法量測。本實驗成功建立量測系統並能得到可靠的量測數值。實驗結果得知Bi-Sb-Te/metal界面間的接觸電阻率約在10-5 ohm-cm2的數量級。而Bi-Sb-Te/metal界面間的接觸熱阻則為在約10-8 m2K/W的數量級。本研究將以不同的金屬界面來比較,藉由量測出的實驗數值來探討界面間電子與聲子的傳輸機制,以期對於熱電材料與金屬間的界面性質有更多的了解。最後由實驗值與理論值的分析,發現金屬的功函數與熱電材料的費米能量之間的差異會對接觸電阻率造成影響。


    Bismuth telluride based compounds have been considered as promising candidates for thin-film thermoelectric (TE) devices due to their superior thermoelectric figure-of-merit at room temperature regime. Thermoelectrics/metal electrode junctions usually cause extra resistance to electron flow and heat flux in a typical TE module, and hence degrade the efficiency of TE devices. Such electrical/thermal contact resistance may become a performance killer, especially for thin-film TE devices. Thus, a methodology of evaluating the electrical/thermal contact resistance of TE/metal interfaces becomes essential. In this study the electrical and thermal contact resistances of Bi-Sb-Te thin film/metal were measured using the transmission-line-model (TLM) and the transient 3ω techniques, respectively. In this study, the results show that the electrical contact resistivities of Bi-Sb-Te/metals are in the order of 10-5 ohm-cm2 and the thermal contact resistances of the Bi-Sb-Te/metals are in the order of 10-8 m2K/W, respectively. The effects of Fermi energy of Bi-Sb-Te compounds and the work function of metals on the electrical and thermal contact resistances of Bi-Sb-Te film/metal interfaces are investigated.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 熱電原理 2 1.3 研究動機與目的 5 第二章 文獻回顧 6 2.1 銻化鉍系列熱電材料 6 2.1.1碲化鉍的晶體結構與熱電特性 6 2.1.2碲化鉍系列材料的內部缺陷 8 2.2 接觸熱阻與接觸電阻 9 2.3 接觸電阻量測法原理 19 2.4 3ω熱傳導係數量測法原理 24 第三章 實驗規劃 30 3.1 實驗設計與流程 30 3.1.1 熱電薄膜的製備 30 3.1.2 接觸熱阻試片製備 32 3.1.3 接觸電阻試片製備 33 3.2熱電薄膜性質量測與分析 34 3.2.1 熱電薄膜電性量測 34 3.2.2 片電阻量測方法 35 3.2.3 3ω 熱傳導係數量測實驗設計 36 3.2.4 接觸電阻量測實驗設計 37 第四章 結果與討論 39 4.1 Bi0.4Sb1.6Te3之熱電性質與熱傳導係數分析 39 4.2熱電薄膜與金屬界面間接觸熱阻分析 48 4.3熱電薄膜與金屬界面間接觸電阻分析 54 第五章 結論 68 參考文獻 69

    [1] G. Min and D.M.Rowe , Solid-State Electronics. 43(1999): p. 923.
    [2] L.W.da Silva and M. Kaviany, International Journal of Heat and Mass Transfer. 47(2004): p. 2417-2435.
    [3] O.J. Mengali and M.R. Seiler, Advanced Energy Conversion. 2(1962): p. 59.
    [4] R.J. Buist and S.J. Roman, Proceedings of the 18th International Conference on Thermoelectrics,Baltimore, MD (1999): p. 249.
    [5] T.D. Alieva, B.S. Barkhalov, and D.S. Abdinov, Inorganic Materials. 31(1995): p. 178.
    [6] 李京樺, “A Study of Interfacial Reactions in Solder Joints of Bismuth Telluride Based Thermoelectric Modules”,國立清華大學博士論文, (2010).
    [7] G.J. Snyder and E.S. Toberer, Nature materials. 7(2008): p. 105.
    [8] J. Black, E.M. Conwell, L. Seigle and C.W. Spencer, Journal of Physics and Chemistry of Solids. 2(1957): p. 240-251.
    [9] G. Wang and T. Cagin, Physical Review B. 76(2007): p. 075201.
    [10] T. Caillat, M. Carle, P. Pierrat, H. Scherrer, and S. Scherrer, Journal of Physics and Chemistry of Solids. 53(1992): p. 1121.
    [11] Y. Hori, D. Kusano, T. Ito, and K. Izumi, Proceedings of the 18th International Conference on Thermoelectrics, Baltimore, MD (1999): p. 328.
    [12] X.A. Fan, J.Y. Yang, R.G. Chen, H.S. Yun, W. Zhu, S.Q. Bao, and X.K. Duan, Journal of Physics D: Applied Physics. 39(2006): p. 740-745.
    [13] G. R. Miller and C.Y. Li, Journal of Physics D-Applied Physics. 39(1965): p. 740.
    [14] Z. Stary, J. Horák, M.Stordeur, and M. Stӧlzer, Journal of Physics and Chemistry of Solids. 49(1988): p. 29.
    [15] F.P. Incropera, D.P. Dewitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Hoboken, New Jersey, (2006):Ch. 3.
    [16] S.M. Sze, Physics of Semiconductor Devices. John Wiley & Sons, Hoboken, New Jersey, (1969):Ch. 3.
    [17] C.Y. Chang, Y.K. Fang, and S.M. Sze, Solid-State Electronics. 14(1971): p. 541-550.
    [18] Y.K. Fang, C.Y. Chang, and Y.K. Su, Solid-State Electronics. 22(1979): p. 933-938.
    [19] A. Lahmar, T.P. Nguyen, D. Sakami, S. Orain, Y. Scudeller, and F. Danes, Thin Solid Films. 389(2001): p. 167-172.
    [20] D. Sakami, A. Lahmar, Y. Scudeller, F. Danes, and J.P. Bardon, Journal of Adhesion Science and Technology 15(2001): p. 1403-1416.
    [21] S. Orain, Y. Scudeller, S. Garcia, and T. Brousse, International Journal of Heat and Mass Transfer. 44(2001): p. 3973-3984.
    [22] A. Majumdar and P. Reddy, Applied Physics Letters. 84(2004): p. 4768.
    [23] E. T. Swartz and R.O. Pohl, Reviews of Modern Physics. 61(1989):p. 605.
    [24] Pramod Reddy, K. Castelino, and Arun Majumdar, Applied Physics Letters. 87(2005): p. 211908.
    [25] J.V. Goicochea and B. Michel, 27th IEEE SEMI-THERM Symposium, (2011).
    [26] D.K. Schroder, Semiconductor Material and Device Characterization. John Wiley & Sons, Hoboken, New Jersey, (1998):Ch. 3.
    [27] H. Murrmann and D. Widmann, IEEE Transactions on Electron Devices. ED-16(1969): p. 1022-1024.
    [28] H.H. Berger, Solid-State Electronics. 15(1972): p. 145-158.
    [29] J.M. Pimbley, IEEE Transactions on Electron Devices. ED-33(1986): p. 1795-1800.
    [30] L.K. Mak, C.M. Rogers and D.C. Northrop, Journal of Physics E: Scientific Instruments. 22(1989): p. 317-321.
    [31] D.G. Cahill, Review of Scientific Instruments. 61(1990): p. 802.
    [32] S. M. Lee and D.G. Cahill, Journal of Applied Physics. 81(1997): p. 2590.
    [33] T. Borca-Tasciuc, A.R. Kumar and G. Chen, Review of Scientific Instruments. 72(2001): p. 2139.
    [34] 蘇小維,“Effect of electric current stressing on thermal/electrical transport properties of sputtered Bi0.5Sb1.5Te3 thin films”, 國立清華大學碩士論文, (2010).
    [35] H.C. Chien, D.J. Yao, M.J. Huang, and T.Y. Chang, Review of Scientific Instruments 79(2008):p. 054902.
    [36] C.N. Liao, Y.C. Wang, and H.S. Chu, Journal of Applied Physics 104(2008):p. 104312.
    [37] Z. Chen, W. Jang, W. Bao, C.N. Lau, and C. Dames, Applied Physics Letters. 95(2009): p. 161910.
    [38] E. Bozorg-Grayeli, J.P. Reifenberg, K.W. Chang, M. Panzer, and K.E. Goodson, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference (2010):p. 1-7.
    [39] H.B. Michaelson, Journal of Applied Physics. 48(1977): p. 4729.
    [40] P.M. Yee, “Pulsed Laser Deposition of Telluride Thin Films for Photonics Applications” 香港理工大學碩士論文, (2008).
    [41] 劉昆明,“Effect of electric current assisted thermal treatments on transport properties and defect elimination in sputtered BiSbTe and BiSeTe thermoelectric thin films”, 國立清華大學博士論文, (2010).
    [42] V. Sandomirsky, A.V. Butenko, R. Levin, and Y. Schlesinger Journal of Applied Physics. 90(2001): p. 2370-2379.
    [43] P. Lost’ak, C. Drasar A. Krejcova, L. Benes, J.S. Dyck, W. Chen, and C. Uher, Journal of Crystal Growth. 222(2001): p. 565-573.
    [44] T. V. Blank and Yu.A. Gol'dberg, Semiconductors. 41(2007): p. 1263-1292.
    [45] F.A. Padovai and R. Stratton, Solid-State Electronics. 9(1966): p. 695-707.
    [46] E. H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts. Clarendon, London(1988).
    [47] G. D. Mahan and L.M. Woods, Physical Review Letters. 80(1998): p. 4016-4019.
    [48] J. Nagao, E. Hatta, and K. Mukasa, Proceedings of the 15th International Conference on Thermoelectrics, (1996): p. 404-407.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE