研究生: |
陳柏羽 |
---|---|
論文名稱: |
利用蒸發作用力驅動流體在分支結構中完成粒子分離 Particle Continuous Separation by Evaporation Force on Microfluidic System |
指導教授: |
饒達仁
Da-Jeng Yao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 粒子分離 、蒸發驅動 、流道製程 |
外文關鍵詞: | particles separation, evaporation force, microchannel fabrication |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當物體尺寸縮小到微米尺度的時候,因為尺度效應的關係,有一些物理特性可以被應用到生物技術上。因此在本論文研究中提出了兩個全新的概念,一個是利用自然蒸發力和結構設計來完成粒子分離,另一個是利用多孔性二氧化矽薄膜製作微流道。在本論文中利用微流體在微米尺度穩定的層流特性,來達到粒子分離的效果。首先利用植物蒸發驅動液體的原理製作類似植物氣孔的蒸發區,使其在微流體系統尾端作為自發性驅動的來源,接著從入口端注入含微粒子液體和不含粒子的流體到微流道中,因為液體處在層流的狀態,所以它不會擴散到不含粒子的流體中,當粒子進入分支結構的時候,不同大小的粒子會隨通過粒子中心的流線進入不同的分支流道,而達到粒子分離的效果。另外在本論文中還發展了一個全新的流道製程,利用厚膜光阻來取代PSG當作犧牲層,以電子束蒸鍍的二氧化矽薄膜當作主要結構,利用多孔性薄膜可以大大減少製程所需的時間,並且容易和金屬製程作整合。此外二氧化矽還兼具化學惰性、親水性、高透光率和價格低廉的優點,將這個製程應用在微流體系統中,在未來的商業上會是個非常有競爭力的技術。
When the size of object is shuck down to micro scale, some physical characteristics can be applied to biotechnology because of scale effects. This thesis has put forward two brand-new conceptions, one utilizes evaporating force and structural design to separate particles naturally, another one use the porous silicon dioxide membrane to fabricate microchannel. In this thesis, we use laminar flow characteristics of microfluid to separate particles. The principle to drive liquid in microfluidic system is evaporating-conception from plants. The evaporating region similar to vents of plants was designed at the end of microchannel to drive liquid spontaneously. The flows with and without particles, were injected into fluidic system, and particles in the flow were fixed on each layer of laminar flow. The particles, flow into separating region, will move with streamline cross theirs center to different branches. Thus, different size of particles will separate spontaneously. Furthermore, a novel fabrication process of microchannel has been developed in this thesis. The material of sacrificing layer of microchannel has replaced by photoresistance. It uses the silicon dioxide membrane, was deposited by E-gun vapor, as main structure of microchannel. This fabrication process only need a short period, and integrates with other fabrication process easily. The silicon dioxide also has other benefits like chemical inertia, hydrophilic, optically clean, and cheap. Therefore, it is a high economic technology to be applied on commercial products.
參考文獻
1.Chih-Li Pan, et al., Development and Electrical Analysis of DNA Aqueous Solution on Microchannel Biochip. Medical and Biological Engineering, 2002. 22(4): p. 161-168.
2.Lin, S.C., et al. A novel protein micro stamper with back-filling reservoir for simultaneous immobilization of large protein arrays. Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International . 2003.
3.Koerner, T., et al., Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels. Sensors and Actuators B, 2005. 107(2): p. 632-639.
4.Swierkowski, S., et al., Large microchannel array fabrication and results for DNA sequencing. Proc. SPIE, 1999. 3606: p. 100-110.
5.陳志芳. 微細加工 ( Micro Machining ), 工業技術人才培訓計劃講義, 2004, Available from: http://www.me.tnit.edu.tw/~me022/lab/shivi.htm.
6.S.Guillaudeu, X.Z., D.M.Aslam, Fabrication of 2-mm wide poly-crystalline diamond channels using silicon molds for micro-fluidic applications. Diamond and Related Materials, 2003. 12(1): p. 65-69.
7.Liu, C.W., et al., Fabrication challenges for a complicated micro-flow channel system at low temperature process. Sensors and actuators A, 2006. 130(31): p. 575-582.
8.Yamazaki, Y., Application of MEMS technology to micro fuel cells. Electrochimica Acta, 2004. 50(2): p. 663-666.
9.LeMinh, P., et al., Novel integration of a microchannel with a silicon light emitting diode antifuse. Micromechanics and Microengineering, 2003. 13(3): p. 425-429.
10.Wu, S., et al., A suspended microchannel with integrated temperature sensors for high-pressure flow studies. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998: p. 87-92.
11.莊榮輝. 酵素純化方法, 國立台灣大學生化研究所, 2002, Available from: http://juang.bst.ntu.edu.tw/ECX/Pur4.htm.
12.Wolff, A. Microtools For Cell Handling at MIC, 2002, Available from: http://www.csem.ch/detailed/a_621-microfluidics-particle.htm.
13.Kovitz, B. 色譜法, Wikipedia, 2001, Available from: http://zh.wikipedia.org/wiki/%E8%89%B2%E8%B0%B1%E6%B3%95.
14.Kovitz, B. 高效液相色譜, Wikipedia, 2001, Available from: http://zh.wikipedia.org/w/index.php?title=%E9%AB%98%E6%95%88%E6%B6%B2%E7%9B%B8%E8%89%B2%E8%B0%B1&variant=zh-tw.
15.周怀瑜. 病原生物天地, 山東大學病原生物研究所, 2002, Available from: http://www.pathobio.sdu.edu.cn/micpic.htm.
16.林銘杰. 量子點(Quantum Dots), NCHC奈米科學研究小組, 2003, Available from: http://nano.nchc.org.tw/dictionary/quantum_dots.html.