研究生: |
郭楊正 Kuo, Yang-Cheng |
---|---|
論文名稱: |
篩選乳酸桿菌Lactobacillus casei ATCC 334基因組中具潛力的第二型抑菌素及其活性分析 Characterization of Putative Bacteriocin Identified from Lactobacillus casei ATCC 334 |
指導教授: |
林志侯
Lin, Thy-Hou |
口試委員: |
方繼
吳銘芳 高茂傑 蘇士哲 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 第二型抑菌素 、乳酸桿菌 |
外文關鍵詞: | Class II bacteriocin, Lactobacillus casei, Double-glycine leader peptide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
抑菌素(bacteriocin )是指細菌所生產的抗菌胜肽,它通常為帶正電及熱穩定的小分子胜肽。本文研究的為第二型抑菌素,常以原型胜肽(propeptide)的形式生產,其N-端常帶有雙甘胺酸(double-glycine) 的前導胜肽,可被特定蛋白辨認、修飾並運輸至細胞膜外,而形成具有活性的抑菌素。根據這些特性,我們利用PFAM與APD2等資料庫來搜尋相關的序列,發現在Lactobacillus casei ATCC 334這株基因全定序的乳酸菌中,帶有八個可能為抑菌素的序列,而此菌株本身未曾被發現會產生任何抑菌素。因此,我們利用異體表現系統,在大腸桿菌中表現、純化其中六種較具潛力的抑菌素,並使用膠體擴散測試法測試其活性。實驗結果顯示m2163 可以抑制部分乳酸菌(lactobacilli)以及李斯特菌(Listeria); 而m2386則可抑制李斯特菌生長。這兩個胜肽皆具有熱穩定以及容易被蛋白脢所分解的特性。經由質譜分析,m2163會透過在序列4與24的半胱胺酸(Cysteine)形成雙硫鍵。而利用定點突變法,以絲胺酸(serine)取代半胱胺酸的實驗顯示,雙硫鍵的形成對於m2163的抑菌活性相當重要。以合成的m2163與m2386進行膜通透性實驗及二級結構分析顯示,合成m2163 在緩衝液即可呈現α-螺旋結構,且依然有抑菌活性,並可以增加膜的通透性; 恒溫滴定熱卡計實驗顯示,m2163對於帶負電的POPG微脂粒之親和力並不強。綜合以上實驗推測m2163可能會針對細菌表面上的特定蛋白或其他物質做結合,而進一步造成膜的通透性改變。另一方面,合成的m2386在緩衝液中依然呈現無結構狀態,必須在30 % TFE環境中才能呈現α-螺旋結構,合成的m2386可能因此喪失其抑菌活性,亦無法改變膜的通透性。
Several putative class II bacteriocin-like genes were identified in Lactobacillus casei ATCC 334 and all of which might encode peptides with a double-glycine leader. Six peptides encoded by these genes were heterologously expressed in Escherichia coli and then partially purified in order to test their bacteriocin activities. The results revealed that the mature LSEI_2163 peptide was a class IId bacteriocin that exhibited antimicrobial activity against some lactobacilli and several Listeria species. Similarly, mature LSEI_2386 was a putative pheromone peptide that also had significant bacteriocin activity against several Listeria species. The activities of both peptides tolerated 121◦C for 30 min, but not treatment with proteinase K or trypsin. The two Cys residues located at positions 4 and 24 in the mature LSEI_2163 peptide were shown by mass spectrometry to form a disulfide bridge, which was required for optimal antibacterial activity. However, replacement of one or both Cys with Ser would cause significant reduction of the antibacterial activity, the reduction being greater when only one of the Cys residues (C4S) was replaced than when both (C4S/C24S) were replaced. Both synthetic m2163 and m2386 behave as a random coil in aqueous solution whereas anα-helix is formed by both in the membrane mimic environment. However, the synthetic m2163 can also behave as anα-helix in a sodium phosphate buffer which would allow it to permeate into the cell membrane of sensitive bacteria and hence a corresponding bactericidal activity is detected. The ITC results indicated that the interaction between m2163 and POPG was weak. Therefore, we suspected that m2163 might have a specific target on the surface of sensitive bacteria. On the contrary, due to the presence of random coil conformation in sodium phosphate buffer, the bactericidal activity of synthetic m2386 is absent and no permeattion into the bacterial membrane is assumed.
Anderssen, EL, Diep, DB, Nes, IF, Eijsink, VG, Nissen-Meyer, J (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Applied and environmental microbiology 64, 2269-2272.
Berridge, N. J. (1949) Preparation of the antibiotic nisin. The Biochemical journal 45, 486-493.
Boman, HG (2003) Antibacterial peptides: basic facts and emerging concepts. Journal of internal medicine 254, 197-215
Brurberg, MB, Nes, IF, Eijsink, VG (1997) Pheromone-induced production of antimicrobial peptides in Lactobacillus. Molecular microbiology 26, 347-360.
Chumchalova, J., Stiles, J., Josephsen, J. and Plockova, M. (2004) Characterization and purification of acidocin CH5, a bacteriocin produced by Lactobacillus acidophilus CH5. Journal of applied microbiology 96, 1082-1089.
Cintas, L. M., Casaus, P., Havarstein, L. S., Hernandez, P. E. and Nes, I. F. (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and environmental microbiology 63, 4321-4330.
Cleveland, J, Montville, TJ, Nes, IF, Chikindas, ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. International journal of food microbiology 71, 1-20.
Cotter, PD, Hill, C, Ross, RP (2005) Bacteriocins: developing innate immunity for food. Nature reviews 3, 777-788.
Cuozzo, S, Calvez, S, Prevost, H, Drider, D (2006) Improvement of enterocin P purification process. Folia microbiologica 51, 401-405.
Delves-Broughton, J., Blackburn, P., Evans, R. J. and Hugenholtz, J. (1996) Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek 69, 193-202.
Diep, D. B., Havarstein, L. S. and Nes, I. F. (1996). Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. Journal of Bacteriology 178, 4472-4483.
Diep, DB, Godager, L, Brede, D, Nes, IF (2006) Data mining and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745. Microbiology 152, 1649-1659.
Diep, D. B., Skaugen, M., Salehian, Z., Holo, H. and Nes, I. F. (2007) Commonmechanisms of target cell recognition and immunity for class II bacteriocins. Proceedings of the National Academy of Sciences of the United States of America 104, 2384-2389.
Fimland, G, Eijsink, VG, Nissen-Meyer, J (2002) Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry 41, 9508-9515.
Franz, CM, van Belkum, MJ, Holzapfel, WH, Abriouel, H, Galvez, A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS microbiology reviews 31, 293-310.
Garneau, S, Martin, NI, Vederas, JC (2002) Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84, 577-592.
Hauge, HH, Mantzilas, D, Moll, GN, Konings, WN, Driessen, AJ, Eijsink, VG, Nissen-Meyer, J (1998) Plantaricin A is an amphiphilic alpha-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry 37, 16026-16032.
Havarstein, LS, Diep, DB, Nes, IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Molecular microbiology 16, 229-240.
Henderson, J. T., Chopko, A. L. and van Wassenaar, P. D. (1992) Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Archives of biochemistry and biophysics 295, 5-12.
Holo, H, Nilssen, O, Nes, IF (1991) Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. Journal of Bacteriology 173, 3879-3887.
Huhne, K., Axelsson, L., Holck, A. and Krockel, L. (1996). Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology (Reading, England) 142, 1437-1448.
Jay, J. M. (1982) Antimicrobial properties of diacetyl. Applied and environmental microbiology 44, 525-532.
Kalmokoff, M. L., Banerjee, S. K., Cyr, T., Hefford, M. A. and Gleeson, T. (2001). Identification of a new plasmid-encoded sec-dependent bacteriocin produced by Listeria innocua 743. Applied and environmental microbiology 67, 4041-4047.
Kawai, Y., Saito, T., Kitazawa, H. and Itoh, T. (1998) Gassericin A; an uncommon cyclic bacteriocin produced by Lactobacillus gasseri LA39 linked at N- and C-terminal ends. Bioscience, biotechnology, and biochemistry 62, 2438-2440.
Kjos, M, Snipen, L, Salehian, Z, Nes, IF, Diep, DB (2010) The abi proteins and their involvement in bacteriocin self-immunity. Journal of Bacteriology 192, 2068-2076.
Klaenhammer, TR (1988) Bacteriocins of lactic acid bacteria. Biochimie, 70: 337-349.
Langdon, G. M., Bruix, M., Galvez, A., Valdivia, E., Maqueda, M. and Rico, M. (1998) Sequence-specific 1H assignment and secondary structure of the bacteriocin AS-48 cyclic peptide. Journal of biomolecular NMR 12, 173-175.
Makarova, K., Slesarev, A., Wolf, Y. and other authors (2006) Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America 103, 15611-15616.
Maqueda, M, Galvez, A, Bueno, MM, Sanchez-Barrena, MJ, Gonzalez, C, Albert, A, Rico, M, Valdivia, E (2004) Peptide AS-48: prototype of a new class of cyclic bacteriocins. Current protein & peptide science 5, 399-416.
Marugg, J. D., Gonzalez, C. F., Kunka, B. S., Ledeboer, A. M., Pucci, M. J., Toonen, M. Y., Walker, S. A., Zoetmulder, L. C. and Vandenbergh, P. A. (1992) Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Applied and environmental microbiology 58, 2360-2367.
McCormick, J. K., Worobo, R. W. and Stiles, M. E. (1996) Expression of the antimicrobial peptide carnobacteriocin B2 by a signal peptide-dependent general secretory pathway. Applied and environmental microbiology 62, 4095-4099.
Moretro, T, Naterstad, K, Wang, E, Aasen, IM, Chaillou, S, Zagorec, M, Axelsson, L (2005) Sakacin P non-producing Lactobacillus sakei strains contain homologues of the sakacin P gene cluster. Research in microbiology 156, 949-960.
Nikolskaya, AN, Galperin, MY (2002) A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic acids research 30, 2453-2459.
Nissen-Meyer, J., Holo, H., Havarstein, L. S., Sletten, K. and Nes, I. F. (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. Journal of bacteriology 174, 5686-5692.
Nissen-Meyer, J, Nes, IF (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Archives of microbiology 167, 67-77.
Nissen-Meyer, J., Oppegard, C., Rogne, P., Haugen, H. S. and Kristiansen, P. E. (2010) Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins. Probiotics and antimicrobial proteins 2, 52-60.
Nissen-Meyer, J, Rogne, P, Oppegard, C, Haugen, HS, Kristiansen, PE (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Current pharmaceutical biotechnology 10, 19-37.
Oppegard, C, Rogne, P, Emanuelsen, L, Kristiansen, PE, Fimland, G, Nissen-Meyer, J (2007) The two-peptide class II bacteriocins: structure, production, and mode of action. Journal of molecular microbiology and biotechnology 13, 210-219.
Papagianni, M. (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnology advances 21, 465-499.
Ramnath, M., Arous, S., Gravesen, A., Hastings, J. W. and Hechard, Y. (2004) Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology (Reading, England) 150, 2663-2668.
Ray, B., Schamber, R. and Miller, K. W. (1999) The pediocin AcH precursor is biologically active. Applied and environmental microbiology 65, 2281-2286.
Richard, C, Drider, D, Elmorjani, K, Marion, D, Prevost, H (2004) Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. Journal of Bacteriol 186, 4276-4284.
Riley, M. A. (1998) Molecular mechanisms of bacteriocin evolution. Annual review of genetics 32, 255-278.
Saenz, Y, Rojo-Bezares, B, Navarro, L, Diez, L, Somalo, S, Zarazaga, M, Ruiz-Larrea, F, Torres, C (2009) Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains. International Journal of Food Microbiology 134, 176-183.
Schagger, H. (2006) Tricine-SDS-PAGE. Nature protocols 1, 16-22.
Stern, N. J., Svetoch, E. A., Eruslanov, B. V. and other authors (2006) Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrobial agents and chemotherapy 50, 3111-3116.
Stock, A. M., Robinson, V. L. and Goudreau, P. N. (2000) Two-component signal transduction. Annual review of biochemistry 69, 183-215.
Stock, J. and Da Re, S. (2000) Signal transduction: response regulators on and off. Current Biology 10, R420-424.
Tsai, Y. K. and Lin, T. H. (2006) Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1. Journal of applied microbiology 100, 446-459.
Tichaczek, PS, Vogel, RF, Hammes, WP (1994) Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673. Microbiology 140, 361-367.
Venema, K, Abee, T, Haandrikman, AJ, Leenhouts, KJ, Kok, J, Konings, WN, Venema, G (1993) Mode of Action of Lactococcin B, a Thiol-Activated Bacteriocin from Lactococcus lactis. Applied and environmental microbiology 59, 1041-1048.
Venema, K, Dost, MH, Venema, G, Kok, J (1996) Mutational analysis and chemical modification of Cys24 of lactococcin B, a bacteriocin produced by Lactococcus lactis. Microbiology 142, 2825-2830.
Wang, G, Li, X, Wang, Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Research 37, D933-937.
Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.