簡易檢索 / 詳目顯示

研究生: 徐尉哲
Wei-Che Hsu
論文名稱: 二極體雷射注入鎖頻846 nm鈦藍寶石雷射及利用KNbO3產生423 nm倍頻藍光雷射之研究
Studies of Ti:sapphire laser by diode-laser injection-locking and its second harmonic generation of 423 nm laser using KNbO3
指導教授: 吳見明
Chien-Min Wu
彭錦龍
Jin-Long Peng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 98
中文關鍵詞: 注入鎖頻二極體雷射鈦藍寶石穩頻倍頻
外文關鍵詞: injection locking, diode laser, Ti:sapphire, SHG
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在目前物理量中,頻率為最能精準量測的值,若將其他物理量以頻率表示,可增加物理量之準確度。而透過雷射致冷鈣原子的方法,可得到光頻標準,未來可將此標準應用於其他領域,達成提升準確度的目的。
    由於鈣原子的致冷能階中1S0 - 1P1的波長為423 nm,目前尚未有適合波長423 nm的高功率雷射,所以本篇論文之目的為製造適合鈣原子雷射致冷之藍光雷射。
    本篇論文主要為利用注入鎖頻之方法,將鈦藍寶石雷射的高功率輸出與二極體雷射中心波長為846 nm波長結合,並且進行雷射倍頻,以得到中心波長423 nm的藍光。未來將使用此道光束進行與鈣原子致冷有關之實驗。
    本實驗中,將紅外光二極體雷射作為主雷射,以注入鎖頻從屬雷射連續波鈦藍寶石雷射之方法,得到一輸出功率880 mW且中心波長為846 nm的紅外光雷射。接下來利用KNbO3晶體進行倍頻效應,將KNbO3放置於增益共振腔中,調整晶體之溫度達成相位匹配。最後得到倍頻光輸出功率為25 mW且波長為423 nm之藍光雷射,倍頻效率為3.2 %。其他利用KNbO3晶體倍頻成果相比,在倍頻光波長同樣為423 nm時,可得到倍頻效率為19 %。經過計算,本實驗中倍頻效率理論值為23.7%,為實際實驗值的13%,由於倍頻效果仍未臻完美,故仍需進一步研究降低倍頻效果的原因,以進行之後雷射致冷及捕捉鈣原子之工作。


    中文摘要………………………………………………………………….I 英文摘要………………………………………………………………...II 誌謝……………………………………………………………………..III 目錄……………………………………………………………………..IV 圖目錄………………………………………………………………….VII 表目錄………………………………………………………………….XII 第一章 序論…………………………………………………………..1 1.1 研究動機………………………………………………………..1 1.2文獻回顧…………………………………………………………2 1.2.1注入鎖頻…………………………………………………..2 1.2.2 倍頻………………………………………………………3 1.3 實驗構想………………………………………………………..4 1.4論文架構…………………………………………………………5 第二章 原理…………………………………………………………..7 2.1 鈦藍寶石雷射…………………………………………………..7 2.2 注入鎖頻………………………………………………………..9 2.3 Pound-Drever Hall 穩頻原理………………………………….13 2.4 Hänsch Couillaud穩頻原理……………………………………18 2.5 倍頻……………………………………………………………20 第三章 利用二極體雷射注入鎖頻鈦藍寶石雷射……………………33 3.1 二極體雷射注入鎖頻鈦藍寶石雷射實驗裝置………………33 3.1.1 鈦藍寶石雷射…………………………………………..33 3.1.2 二極體雷射……………………………………………..36 3.1.3 注入鎖頻之條件………………………………………..39 3.2 實驗步驟………………………………………………………45 3.3 結果及討論……………………………………………………49 3.3.1 鈦藍寶石雷射之輸出…………………………………..49 3.3.2 鈦藍寶石之吸收………………………………………..53 3.3.3 使用雙折射濾波器調整雷射波長……………………..55 3.3.4 鈦藍寶石雷射共振腔之特性…………………………..57 3.3.5 誤差訊號………………………………………………..58 3.3.6 鎖頻之效果……………………………………………..65 第四章 利用鈮酸鉀晶體產生倍頻……………………………………69 4.1 利用鈮酸鉀晶體產生倍頻實驗裝置…………………………69 4.1.1 倍頻增益腔……………………………………………..69 4.1.2 非線性晶體……………………………………………..78 4.1.3 溫度控制器……………………………………………..80 4.2 實驗步驟………………………………………………………81 4.3 倍頻之結果及討論……………………………………………83 4.3.1 倍頻共振腔穩頻結果…………………………………..83 4.3.2 相位匹配溫度…………………………………………..87 4.3.3 倍頻效率………………………………………………..89 第五章 結論…………………………………………………………93 參考文獻………………………………………………………………..95

    1. T. P. Heavner, L. Hollberg, S. R. Jefferts, J. Kitching, W. M. Klipstein, D. M. Meekhof, and H. G. Robinson, "Characterization of a cold cesium source for PARCS: Primary atomic reference clock in space," IEEE Transactions on Instrumentation and Measurement 50, 500-502 (2001).
    2. E. Bava, A. Godone, G. Giusfredi, and C. Novero, "The Mg Atomic Frequency Standard," IEEE Journal of Quantum Electronics 23, 455-457 (1987).
    3. C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, "A diode-laser optical frequency standard based on laser-cooled Ca atoms: Sub-kilohertz spectroscopy by optical shelving detection," European Physical Journal D 7, 449-460 (1999).
    4. A. A. Madej, K. J. Siemsen, L. Marmet, J. E. Bernard, and O. Acef, "Linking the 474 THz HeNe/I-2 standard to the 445 THz single Sr+ trapped ion standard: Heterodyne frequency measurements using an OsO4 stabilized 29 THz laser system," IEEE Transactions on Instrumentation and Measurement 48, 553-557 (1999).
    5. P. T. H. Fisk, M. J. Sellars, M. A. Lawn, C. Coles, A. G. Mann, and D. G. Blair, "Very High-Q Microwave Spectroscopy on Trapped Yb-171(+) Ions - Application as a Frequency Standard," IEEE Transactions on Instrumentation and Measurement 44, 113-116 (1995).
    6. H. L. Stover, and W. H. Steier, "Locking of Laser Oscillator by Light Injection," Applied Physics Letters 8, 91-93 (1966).
    7. I. T. Katori H., Isoya Y., Kuwata-Gonokami M., "Magneto-Optical Trapping and Cooling of Strontium Atoms Down to the Photonrecoil Temperature," Physical Review Letters 82, 1116-1119 (1999).
    8. C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, and R. L. Byer, "Injection Locking of a 13-W Cw Nd-Yag Ring Laser," Optics Letters 14, 1189-1191 (1989).
    9. T. Urisu, T. Sugeta, Y. Mizushima, and K. Tsunenari, "Stabilized Injection Locking Light Amplification of a 1.15-Mum He-Ne-Laser," Journal of Applied Physics 52, 3154-3158 (1981).
    10. I. J. Bigio, and M. Slatkine, "Transform-Limited-Bandwidth Injection Locking of an Xef Laser with an Ar-Ion Laser at 3511-A," Optics Letters 7, 19-21 (1982).
    11. C. K. Ni, and A. H. Kung, "Amplified spontaneous emission reduction by use of stimulated Brillouin scattering: 2-ns pulses from a Ti : Al2O3 amplifier chain," Applied Optics 37, 530-535 (1998).
    12. S. H. J. Deyerl, Jensen H.R., Plougmann J.B., Kristensen N.M., "Fabrication and stability of fiber Bragg gratings for WDM applications using a 266 nm CW-laser," Laser electro-optics conference (2003).
    13. K. Chang, K. A. Hummer, and J. L. Klein, "Experiments on Injection Locking of Active Antenna Elements for Active Phased-Arrays and Spatial Power Combiners," Ieee Transactions on Microwave Theory and Techniques 37, 1078-1084 (1989).
    14. P. A. Franken, A. E. Hill, and C. W. Peters, "Generation of Optical Harmonics," Physical Review Letters 7, 118 (1961).
    15. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, "Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses," Optics Letters 23, 1594-1596 (1998).
    16. P. B. Phua, K. S. Lai, R. F. Wu, and T. C. Chong, "Coupled tandem optical parametric oscillator (OPO): an OPO within an OPO," Optics Letters 23, 1262-1264 (1998).
    17. D. R. Preuss, and J. L. Gole, "Three-stage birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design," Applied Optics 19, 702-710 (1980).
    18. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The Photonic Band-Edge Optical Diode," Journal of Applied Physics 76, 2023-2026 (1994).
    19. A. E. Siegman, "Lasers," Mill Valley, 1129 (1996).
    20. E. D.Black, "An introduction to Pound–Drever–Hall laser frequency stabilization," American Association of Physics Teachers 69, 79-87 (2001).
    21. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "Frequency-Modulation (Fm) Spectroscopy - Theory of Lineshapes and Signal-to-Noise Analysis," Applied Physics B-Photophysics and Laser Chemistry 32, 145-152 (1983).
    22. O. Hahtela, K. Nera, and I. Tittonen, "Position measurement of a cavity mirror using polarization spectroscopy," Journal of Optics a-Pure and Applied Optics 6, S115-S120 (2004).
    23. Y. Kaneda, and S. Kubota, "Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator," Applied Optics 36, 7766-7775 (1997).
    24. Robert W. Boyd, "Nonlinear Optics," ELSEVIER (2003).
    25. E. Jurdik, J. Hohlfeld, A. F. van Etteger, A. J. Toonen, W. L. Meerts, H. van Kempen, and T. Rasing, "Performance optimization of an external enhancement resonator for optical second-harmonic generation," Journal of the Optical Society of America B-Optical Physics 19, 1660-1667 (2002).
    26. 黃冠賓, "A Homemade Tunable、Continuous Wave Ti:sapphire Laser," 國立東華大學應用物理研究所, (2004).
    27. L.-Y. Cheng, "CW Injection-locked Frequency Ti:sapphire Laser," National Tsing Hua University (2004).
    28. P. Richard, and B. S. Kovacich, "The Precision of Modern Phase Coherent Optical to Microwave Frequency Chains," The University of Western Australia Department of Physics (2000).
    29. W. J. Joo, C. H. Oh, P. S. Kim, and S. H. Song, "Enhanced frequency doubling of a laser diode using a ring enhancement cavity," Journal of the Korean Physical Society 33, 31-35 (1998).
    30. A. Ashkin, G. Boyd, and J. Dziedzic, "Resonant optical second harmonic generation and mixing," IEEE Journal of Quantum Electronics 2, 109-124 (1966).
    31. I. Hirano, and N. Ito, "Spectral characteristics of cascade master/slave/slave injection-locking of laser diodes," Optics and Laser Technology 37, 81-86 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE