簡易檢索 / 詳目顯示

研究生: 林耕舜
Keng-Shuen Lin
論文名稱: CMOS熱電式紅外線微感測器之設計、製造與系統整合
Design and Fabrication of CMOS-Integrated Thermoelectric IR Microsensors
指導教授: 陳榮順
Rongshun Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 79
中文關鍵詞: CMOS-MEMS熱電式紅外線微感測器系統響應度CoventorWareNETDSeebeck EffectSeebeck Coefficient等效電路模型歸一化偵測度On-Chip HeaterHeat SinkTSMC
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於紅外線感測器可廣泛應用於軍事、工業等用途上,故如何生產具有成本低、性能高的紅外線感測器近年來已逐漸獲得重視。此外適逢微機電系統之迅速發展,因此可藉由日益成熟的半導體製程技術將微結構整合於積體電路中以實現具有尺寸小、成本低、整合性佳與性能高之紅外線感測器。
    本論文以台積電0.35um 2P4M Mixed Signal製程與Post-CMOS製程為基礎所設計之熱電式紅外線微感測器具有填充率高、感測面積小、電路整合性佳、系統性能高等優點。透過熱傳分析與熱、電等效原理將感測器結構類比成一簡單的等效電路模型,再經由幾何上的考量尋找到最佳的幾何設計尺寸,使得在小感測面積下系統仍具有較佳的響應度、歸一化偵測度與NETD值。為了驗證感測器之可行性,本研究使用CoventorWare從事數值模擬,分析結果顯示感測器響應度為432.15 V/W,NETD = 104.44 mK,時間常數為2.49 ms。最後再以標準CMOS製程為基礎將感測電路與微結構整合於同一晶片中,並建立量測系統以讀取晶片之熱輻射感測訊號。


    摘要 I 誌謝 II 目錄 III 圖表目錄 V 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 2 1.2.1感測器的種類 2 1.2.2熱型感測器的種類與比較 3 1.2.3熱電式紅外線微感測器 4 1.3本文大綱 8 第二章 系統架構與元件設計 9 2.1系統架構簡介 9 2.2熱電效應之原理 10 2.3感測器之性能指標 11 2.4結構設計 15 2.5 On-Chip電路設計 22 第三章 感測系統之分析、模擬結果 26 3.1感測器之等效電路模型 26 3.2感測器結構之熱傳模擬 32 3.3感測器結構之最佳尺寸分析 35 3.4感測電路之模擬與分析 46 3.5電路雜訊之模擬與分析 51 第四章 製程簡介與實驗結果 53 4.1製程簡介 53 4.2後製程簡介 57 4.3光罩佈局 58 4.4 製程結果與討論 63 4.5 實驗量測與討論 68 第五章 結論與未來工作 74 5.1 本論文貢獻 74 5.2 未來工作 75 參考文獻 77

    [1] R. D. Hudson and J. W. Hudson, “The military applications of remote sensing by infrared,” Proceedings of the IEEE, vol. 1, pp. 104-128, 1975.
    [2] K. Yamashita, A. Murata, and M. Okuyama, “Golay-cell type of miniaturized infrared sensor using Si-diaphragm,” Proceedings of TRANSDUCERS '97 - The International Conference on Solid-State Sensors and Actuators, vol. 2, pp. 1067-1070, 1997.
    [3] T. Toriyama, M. Yajima, and S. Sugiyama, “Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile,” Proceedings of the IEEE - The International Conference on Micro Electro Mechanical Systems, pp. 562-565, 2001.
    [4] J. S. Shie, Y. M. Chen, M. Ou-Yang, and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” Journal of Microelectromechanical Systems, vol. 5, pp. 298-306, 1996.
    [5] E. Iborra, M. Clement, L. V. Herrero, and J. Sangrador, “IR uncooled bolometers based on amorphous GexSi1-xOy on silicon micromachined structures,” Journal of Microelectromechanical Systems, vol. 11, pp. 322-329, 2002.
    [6] M. C. Hsieh, Y. K. Fang, P. M. Wu, C. C. Yang, Y. C. Lin, W. D. Wang, S. F. Ting, and J. J. Ho, “Design and fabrication of a novel crystal SiGeC far infrared sensor with wavelength 8-14 micrometer,” IEEE Sensors Journal, vol. 2, pp. 360-365, 2002.
    [7] M. F. Tompsett, “A pyroelectric thermal imaging camera tube,” IEEE Transactions on Electron Devices, vol. 18, pp. 1070-1074, 1971.
    [8] A. D. Oliver and K. D. Wise, “A 1024-element bulk-micromachined thermopile infrared imaging array,” Sensors and Actuators, A: Physical, vol. 73, pp. 222-231, 1999.
    [9] R. Muanghlua, S. Cheirsirikul, and S. Supadech, “The study of silicon thermopile,” Proceedings of TENCON 2000, vol. 3, pp. 226-229, 2000.
    [10] 0A. Schaufelbuhl, N. Schneeberger, U. Munch, M. Waelti, O. Paul, O. Brand, H. 0Baltes, C. Menolfi, H. Qiuting, E. Doering, and M. Loepfe, “Uncooled low-cost 0thermal imager based on micromachined CMOS integrated sensor array,” 0Journal of Microelectromechanical Systems, vol. 10, pp. 503-510, 2001.
    [11] 0H. Baltes, O. Paul, and O. Brand, “Micromachined thermally based CMOS 0microsensors,” Proceedings of the IEEE, vol. 86, pp. 1660-1678, 1998.
    [12] 0M. Muller, W. Budde, R. Gottfried-Gottfried, A. H-Ubel, R. Jahme, and H. 0Kuck, “A thermoelectric infrared radiation sensor with monolithically 0integrated amplifier stage and temperature sensor,’’ Proceedings of 0TRANSDUCERS '95 - The International Conference on Solid-State Sensors and 0Actuators, vol. 2, pp. 640-643, 1995.
    [13] 0H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Yong, W. Lee, and S. G. Kim, “A 0high fill-factor infrared bolometer using micromachined multilevel 0electrothermal structures,’’ IEEE Transactions on Electron Devices, vol. 46, pp. 01489-1491, 1999.
    [14] 0周正三,熱導型壓力微感測器,國立交通大學光電工程研究所博士論文,0pp. 44-50,1997。
    [15] 0L. Yueying, S. Dexin, and Z. Ziqiang, “The design of adding heat reflective 0emitter coatings on the cold region of infrared thermopiles,’’ Proceedings of the0IEEE - The International Conference on Thermoelectronics, pp. 458-462, 2002.
    [16] 0B. C. S. Chou and M. Ou-Yang, “Thermopile infrared sensors array and method 0of manufacturing the same thermopile infrared sensor,” U. S. Patent 6335478B1, 02002.
    [17] 0K. Liao, R. Chen, and B. C. S. Chou, “Analysis and design of thermoelectric 0infrared microsensor,” Proceedings of ASME - The International Mechanical 0Engineering Congress and Exposition, pp. 16-21, 2003.
    [18] 0C. Escriba, E. Campo, D. Esteve, and J. Y. Fourniols, “Complete analytical 0modeling and analysis of micromachined thermoelectric uncooled IR sensors,” 0Sensors and Actuators, A: Physical, vol. 120, pp. 267-276, 2005.
    [19] 0駱緯世,“熱電式紅外線微感測器之設計、分析及製造”,國立清華大學動0力機械工程研究所碩士論文,民國九十三年。
    [20] 0邱大紘,“CMOS MEMS 熱電式紅外線微感測器之設計與實現”,國立清華
    0大學動力機械工程研究所碩士論文,民國九十四年。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE