簡易檢索 / 詳目顯示

研究生: 李承翰
Li, Cheng Han
論文名稱: 共享索引運算的低複雜度64x4空間調變多輸入多輸出偵測器
A Low-Complexity 64x4 Spatial Modulation MIMO Detector with Shared Index Processing
指導教授: 黃元豪
Huang, Yuan Hao
口試委員: 賴以威
Lai, I Wei
蔡佩芸
Tsai, Pei Yun
陳喬恩
Chen, Chiao En
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 76
中文關鍵詞: 多輸入多輸出偵測器空間調變空間調變多輸入多輸出偵測器
外文關鍵詞: multi-input multi-output detector, spatial modulation, spatial modulation multi-input multi-output detector
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,高傳輸速率與傳輸質量受到高度重視。雖然多輸入多輸出(MIMO)系統能夠滿足以上兩項要求,但多天線傳輸造成的大量能源消耗被認為是新的問題。因此,研究學者們提出多輸入多輸出空間調變技術(GSM-MIMO),通過減少發射天線數量(active antenna)降低能源消耗,並使用天線的空間多樣性增加傳輸速率。本論文提出的演算法是基於CECML-OB-MMSE的硬體設計,稱為共享索引運算於CECML的低複雜度64x4空間調變多輸出多輸入偵測器。在天線索引選擇時,提出的演算法使用共享索引方法取代記憶體存取,以減少計算複雜度和記憶體的硬體資源。此外,我們使用並行技術調整硬體執行時間與面積之間的平衡。在符號偵測部分,我們使用Joint QR-SIC偵測器取代MMSE偵測器,以避免反矩陣運算。最後,我們在提出的演算法中加入錯誤更正碼,使其BER效能接近ML。新演算法的硬體設計通過FPGA驗證,且在本論文中有硬體面積、時間與能量的分析。


    The high data rate and the quality of transmission is attached great importance in recent years.Though the multiple-input-multiple-output (MIMO) system can achieve these requirement, the new MIMO technology called generalized spatial modulation MIMO (GSM-MIMO) that has additional consideration about power consumption.This thesis proposes a hardware design of CECML-OB-MMSE detector \cite{CECML} called parallel 4 shared index processing with joint QR-SIC in GSM-MIMO system.At the index selection, the new algorithm uses shared index method instead of memory access to reduce hardware resource and computational complexity.And the parallel technology trades off the hardware latency and area.
    At the symbol detection, we use joint QR-SIC detector \cite{JQRSIC} instead of MMSE detector to avoid matrix inverse and decrease hardware latency.After using error correction code (ECC), the BER performance of this algorithm is close to maximum likelihood (ML).The hardware architecture is designed and verified by FPGA and TSMC90nm.The analysis of hardware area, hardware timing and hardware power are presented as well.

    1 Introduction 1 1.1 Multiple-Input Multiple-Output (MIMO) System . . . . . . . . . . . . . 1 1.2 Spatial Modulation Multiple-Input Multiple-Output System (SM-MIMO) 2 1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Spatial Multiplexing MIMO (SMX-MIMO) Detector 5 2.1 SMX-MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Optimal Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Maximum Likelihood (ML) Detector . . . . . . . . . . . . . . . . 6 2.2.2 Sphere Decoding (SD) Detector . . . . . . . . . . . . . . . . . . . 6 2.3 Sub-Optimal Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 Zero-Forcing (ZF) Detector . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Minimum Mean-Squared Error (MMSE) Detector . . . . . . . . . 8 2.3.3 QR-SIC Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Generalized Spatial Modulation MIMO (GSM-MIMO) Detector 13 3.1 GSM-MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Optimal Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 ML Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Receiver-Centric SD (Rx-SD) Detector . . . . . . . . . . . . . . . 15 3.3 Sub-Optimal Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 Iterative Zero Forcing (IZF) Detector . . . . . . . . . . . . . . . . 17 3.3.2 Expectation SD (ESD) detector . . . . . . . . . . . . . . . . . . . 18 3.3.3 Ordered Block MMSE (OB-MMSE) Detector . . . . . . . . . . . 20 3.3.4 Computational Efficient Concentrated ML (CECML) OB-MMSE Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.5 Joint QR-SIC Detector . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Proposed GSM-MIMO Shared Index CECML with Joint QR-SIC 37 4.1 Shared Index CECML with Specific Codebook . . . . . . . . . . . . . . . 37 4.2 Antenna Index Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Joint MMSE detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Architecture Design 51 5.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Antenna Index Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2.1 Weighting Parameter . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2.2 Weighting Computation . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.3 Antenna Index Group . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.4 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 Joint QR-SIC Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.1 CORDIC Processor . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.2 Joint Index SIC Detector . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.3 Timing Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4 Fixed-Point Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.5 FPGA Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.6 FPGA Synthesis Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.6.1 Device Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.6.2 Timing and Throughput Analysis . . . . . . . . . . . . . . . . . . 64 5.6.3 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.7 TSMC90nm Synthesis Result . . . . . . . . . . . . . . . . . . . . . . . . 68 5.8 Scientific Notation for Optimizing Timing . . . . . . . . . . . . . . . . . 70 6 Conclusion 73

    [1] Chiao-En Chen, Member, IEEE, Cheng-Han Li, and Yuan-Hao Huang, Member, IEEE, “An Improved Ordered-Block MMSE Detector for Generalized Spatial Modulation,” in IEEE Commun. Lett., vol. 19, no. 5, May 2015, pp. 707–710.
    [2] Yen-Lin Chen, “A Low-Complexity 128x7 Spatial Modulation MIMO Detector with Joint Subset QR Decomposition,” Master’s thesis, National Tsing Hua University, Taiwan, Nov 2014.
    [3] Raed Y. Mesleh, H. Haas, S. Sinaovic, C. W. Ahn, and S. Yun, “Spatial modulation,” in IEEE Trans. Veh. Technol., vol. 57, no. 4, July 2008, pp. 2228–2241.
    [4] Marco Di Renzo, Harald Haas, Ali Ghrayeb, Shinya Sugiura and Lajos Hanzo, “Spatial Modulation for GeneralizedMIMO: Challenges, Opportunities, and Implementation,” in Proceedings of the IEEE, vol. 102, no. 1, January 2014, pp. 56–103.
    [5] Yue Xiao, Zongfei Yang, Lilin Dan, Ping Yang, Lu Yin, and Wei Xiang, “Low-Complexity Signal Detection for Generalized Spatial Modulation,” in IEEE Commun. Lett., vol. 18, no. 3, March 2014, pp. 403–406.
    [6] A. Younis, R. Mesleh, H. Haas, and P. Grant, “Reduced Complexity Sphere Decoder for Spatial Modulation Detection Receivers,” in 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, USA, 2010, pp. 1–5. 72 BIBLIOGRAPHY
    [7] Yue Sun, JintaoWang and Longzhuang He, “Iterative zero forcing detection scheme for generalised spatial modulation,” in Broadband Multimedia Systems and Broadcasting (BMSB), 2015 IEEE International Symposium, June 2015, pp. 1–4.
    [8] Yang Jiang, Yuanlu Wang, Jiejun Wen, Mingxing Shao and Yibo Li, “Spatial Modulation Scheme With Low-Complexity Detection Algorithms,” in Communications
    Letters, IEEE, vol. 19, Aug 2015, pp. 1422–1425.
    [9] Chia-You Liu, “Low-complexity Detectors for Spatially Modulated MIMO Systems,” Master’s thesis, National Chiao Tung University, Taiwan, Feb 2014.
    [10] IEEE 802.16 Working Group, “IEEE Standard for Local and Metropolitan Area NetworksVPart 16: Air Interface for Fixed Broadband Wireless Access Systems,” in IEEE Std. 802.16-2004, October 2004.
    [11] Abdelhamid Younis, Nikola Serafimovski, Raed Mesleh and Harald Haas, “Generalised Spatial Modulation,” in Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference, 2010, pp. 1498–1502.
    [12] Jinlin Fu, Chunping Hou, Wei Xiang, Lei Yan, and Yonghong Hou, “Generalised Spatial Modulation with Multiple Active Transmit Antennas,” in GLOBECOM
    Workshops (GC Wkshps), 2010 IEEE, 2010, pp. 839–844.
    [13] Fienberg, Stephen E., van der Linden, Wim J., “Statistics for Social and Behavioral Sciences.”
    [14] Longzhuang He, Jintao Wang and Jian Song, “Extended Spatial Modulation Scheme with Low Complexity Detection Algorithms,” in Wireless Communications and Mobile Computing Conference (IWCMC), 2014 International, Aug 2014, pp.582–587.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE