簡易檢索 / 詳目顯示

研究生: 黃英叡
Huang, Ying-Jui
論文名稱: 新型垂直式CMOS加速度感測器之研製
A Novel Design for CMOS Capacitive Vertical Accelerometer
指導教授: 周懷樸
Chou, Hwai-Pwu
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 111
中文關鍵詞: 微機電加速度計殘留應力化學電漿蝕刻
外文關鍵詞: MEMS, Accelerometer, Residual stress, Chemical plasma etching
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出ㄧ利用化學電漿蝕刻的新型CMOS後製程技術,此製程是讓反應氣體在較低的真空度下,其平均自由徑較短,因而增加了側向蝕刻能力,蝕刻結果趨近於等向性的蝕刻效果,而側向蝕刻能力可以由反應腔體的真空度來控制。除此之外,利用化學電漿蝕刻的CMOS後製程可以去除遮罩下方的二氧化矽,因此在CMOS微結構的垂直方向可以製作出類似對稱的堆疊結構,用這對稱的結構可有效的抑制CMOS多層結構的殘留應力問題。更進ㄧ步,這個後製程也可以製作CMOS單層金屬結構,如微彈簧。而以單層金屬結構所製作的微彈簧其彈性係數非常的低,可以有效的增加CMOS感測器的靈敏度。 本研究利用一平行板電容之CMOS垂直加速度計來驗證此新型的後製程概念,量測結果指出,在500 μm × 500 μm 的CMOS結構下,翹曲高度小於2 μm,而垂直的CMOS加速度計靈敏度為3.2 mV/g,系統的噪聲約10 μV / √Hz。


    This study presents a novel fabrication process of post-CMOS (complementary metal oxide semiconductor) with the chemical plasma etching. To release the CMOS microstructures, the shorter mean free path to increase lateral etching can be employed in the rough vacuum. The etching profile trends isotropy and the capability of lateral etching are controlled by pressure of the chamber. In addition, the chemical plasma etching can release silicon dioxide under the mask. This approach can fabricate symmetric geometry in the vertical direction to decrease the effect of CMOS–MEMS residual stress. Moreover, the thin single metal layer structures also can be fabricated by chemical plasma etching such as micro-spring. It has the characteristics of the lower spring constant to increase the displacement of the proof mass. Thus, the sensitivity can be further improved.
    A parallel-plate capacitive vertical CMOS accelerometer is demonstrated in this new concept of post-CMOS process. Based on this approach, the measured results show the residual stresses effect can be minimized in CMOS multilayer microstructures, and furthermore the curl-up effect of flat-plane is less than 2 µm across the 500 μm × 500 μm area. The sensitivity of the vertical CMOS accelerometer is about 3.2 mV/g, and total noise floor is 10 μV / √Hz.

    中文摘要 I ABSTRACT II 誌 謝 III 目 錄 IV 表 目 錄 XIV 第一章 緒 論 1 1-1研究背景 1 1-2研究動機與目地 2 1-3研究概要 4 第二章 文獻回顧 5 2-1 CMOS-MEMS 翹曲問題改善 6 2-2 CMOS-MEMS 靈敏度改善 9 2-3 CMOS-MEMS 讀出電路 13 第三章 CMOS微加速度計理論與雜訊分析 17 3-1 加速度計機械原理 17 3-2 加速度計雜訊原理 20 3-3 截波穩定架構 23 第四章 CMOS-MEMS加速度計設計 25 4-1 元件設計 25 4-2 週期性堆疊改善應力問題 27 4-2-1 彈簧設計 31 4-2-2 質量塊設計 33 4-2-3 感測元件設計 34 4-3 介面電路設計 39 4-3-1 全差動橋式電路及電壓緩衝器設計 40 4-3-2實體佈局(layout) 53 第五章 POST-CMOS 56 5-1 菱鏡傾斜曝光技術 56 5-2 等向乾蝕刻應用於POST-CMOS製程 67 第六章 量測與討論 79 6-1 讀出電路 79 6-2 CMOS-MEMS 加速度計量測 84 第七章 結果與展望 87 参考文獻 89 附錄 A低雜訊微小電荷量測電路 95 附錄 B 雙取樣解調變技術 101 作者介紹 108

    [1] STMicroelectronics, http://www.yole.fr/
    [2] Yole Development, http://www.st.com
    [3] S. J.Sherman, W. K. Tsang, T. A. Core, R. S. Payne, D. E. Quinn, K. H.-L. Chau, J. A. Farash and S. K. Baum, “Low Cost Monolithic Accelerometer,” Dig. VLSI Circuits Symp, pp. 34-35, 1992.
    [4] K. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart and R. G. Marcheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low-G Applications,” IEEE Conf. on Solid-State Sensors & Actuators, pp. 593-596, 1995.
    [5] J. Wu, G. K. Fedder and L. R. Carley, “A Low-Noise Low-Offset Capacitive Sensing Amplifier for a 50-μg/√Hz Monolithic CMOS-MEMS Accelerometer, ” IEEE J. of Solid-State Circuits, vol. 39, pp. 722-730, 2004.
    [6] W. Yun, R. T. Howe and P. R. Gray, “Surface Micromachined Digitally Force-Balanced Accelerometer with Integrated CMOS Detection Circuitry,” Solid-State Sensor and Actuator Workshop, pp. 126-131, 1992.
    [7] N. Yazdi and K. Najafi, “An Interface IC for a Capacitive Silicon μg Accelerometer,” IEEE Int. Solid-State Circuits Conf., pp. 132-133, 1999.
    [8] N. Wongkomet and B. E. Boser, “Correlated Double Sampling in Capacitive Position Sensing Circuits for Micromachined Applications,” IEEE Asia-Pacific Conf. on Circuits and System, pp. 723-726, 1998.
    [9] 王智弘 “成本微縮/殺手級應用齊下MEMS席捲消費性電子市場”新電子 2008 年 1 月號 262 期
    [10] http://www.piezocryst.com/downloads/Piezoelectric_Sensors_01.pdf
    [11] H. J. Nam, Y. S. Kim, S. M. Cho, C. S. Lee, J. U. Bu and J. W. Hong, “Piezoelectric PZT Cantilever Array Integrated with Piezoresistor for High Speed Operation and Calibration of Atomic Force Microscopy” Journal of Semiconductor Technology and Science, vol. 2, pp. 246-252, 2002
    [12] M. C. Huang, Y. J. Huang and H. P. Chou, “A Low-Noise CMOS Readout Circuit for Capacitive Micro-Sensors,” 5th IEEE International Conference on Sensors, pp. 1135-1138, 2006.
    [13] O. Brand and G. K. Fedder, AdvancedMicro & Nanosystems. 2. CMOS–MEMS, Wiley-VCH, 2005.
    [14] C. H. Hsueh and S. Lee, “Modeling of Elastic Thermal Stresses in Two Materials Joined by a Graded Layer,” Composites B, vol. 34, pp. 747-752, 2003.
    [15] C. H. Hsueh, “Modeling of elastic deformation of multilayers due to residual stresses and external bending,” J. Appl. Phys., vol. 91, pp. 9652-9656, 2002.
    [16] Y. J. Huang, T. L. Chang, H. P. Chou, “Study of Symmetrical Microstructures for CMOS Multilayer Residual Stress,” Sens. Actuators A, vol. 150, pp. 237-242, 2009.
    [17] G. Zhang, H. Xie, L. E. de Rosset and G. K. Fedder, “A Lateral Capacitive CMOS Accelerometer with Structural Curl Compensation,” IEEE 12th MEMS'99 Conf., pp. 606-611, 1991.
    [18] H. Qu, D. Fang and H. Xie, “A Monolithic CMOS-MEMS 3-Axis Accelerometer with a Low-Noise, Low-Power Dual-Chopper Amplifier” Sensors Journal, vol. 8, pp.1511-1518, 2008.
    [19] H. Qu and H. Xie, “Process Development for CMOS-MEMS Sensors with Robust Electrically Isolated Bulk Silicon Microstructures,” IEEE/ASME J. MEMS, vol. 16, pp.1152-1161, 2007.
    [20] C. W. Wang, M. H. Tsai, C. M. Sun and W. L. Fang, “A novel CMOS Out-of-Plane Accelerometer with Fully Differential Gap-Closing Capacitance Sensing Electrodes,” J. Micromech. Microeng., vol. 17, pp. 1275-1280, 2007.
    [21] C. M. Sun, C. W. Wang and W. Fang, “On the Sensitivity Improvement of CMOS Capacitive Accelerometer,” Sens. Actuators A, vol. 141, pp. 347-352, 2008.
    [22] ADXL50, “Monolithic Accelerometer with Signal Conditioning,” Datasheet, Analog Devices Inc, One Technology Way, Norwood, MA 02062, 1993.
    [23] M. Tavakoli and R. Saroeshkar, “An Offset-Cancelling Low-Noise Lock-in Architecture for Capacitive Sensing,” IEEE J. Solid-State Circuits, vol. 38, pp. 244-253, 2003.
    [24] M. Suster, J. Guo, N. Chaimanonart, W. H. Ko and D. J. Young, “Low-Noise CMOS Integrated Sensing Electronics for Capacitive MEMS Strain Sensors,” IEEE Custom Integrated Circuits Conf., pp. 693-696, 2004.
    [25] Microsystem Design by Stephen D. Senturia, Kluwer Academic Publisher, 2001.
    [26] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel and G. K. Fedder, “Post-CMOS Processing for High-Aspect-Ratio Integrated Silicon Microstructures,” IEEE/ASME J. MEMS, vol. 11, pp. 93-101, 2002.
    [27] Silicon VLSI Technology, “Fundamentals, Practice, and Modeling,” James D. Plummer Michael D. Deal Peter B. Griffin, Prentice Hall, 2000.
    [28] C. C. Enz and G. C. Temes, “Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization,” Proc. IEEE, vol. 84, pp. 1584-1614, 1996.
    [29] CIC 訓練課程:CMOS-MEMS
    [30] H. Xie, Y. Pan and G. K. Fedder, “A CMOS-MEMS Mirror with Curled-Hinge Comb Drives,” J. Microelectromech. Syst., vol. l2, pp. 450-457, 2003.
    [31] Marc J. Madou, “Fundamentals of Microfabrication,” The Science of Miniaturization, CRC Press, 2002.
    [32] D. L. Flamm, “Feed Gas Purity and Environmental Concerns in Plasma Etching-Part 1,” Solid State Technol., vol. 36, pp. 49-54, 1993.
    [33] T. A. Core, W. K. Tsang and S. J. Sherman, “Fabrication Technology for an Integrated Surface-Micromachined Sensor,” Soild State Technol. vol. 36, pp. 39-47, 1993.
    [34] H. Xie and G. K. Fedder, “Vertical Comb-Finger Capacitive Actuation and Sensing for CMOS–MEMS,” Sens. Actuators A, vol. 2, pp. 212-221, 2002.
    [35] H. Luo, X. Zhu, H. Lakdawala, L. R. Carley and G. K. Fedder, “A Copper CMOS–MEMS Z-Axis Gyroscope,” IEEE MEMS conf., pp. 631-634, 2002.
    [36] Material database, MEMS and Nanotechnology Exchange, http://www.memsnet.org/material/.
    [37] Material Properties Database, Massachusetts Institute of Technology, MA02139-4307, http://web.mit.edu/6.777/www/matprops/matprops.htm.
    [38] M. V. Arx, O. Paul and H. Baltes, “Determination of the Heat Capacity of CMOS Layers for Optimal CMOS Sensor Design,” Sens. Actuators A, vol. 47, pp. 428-431, 1995.
    [39] National Applied Research Laboratories, National Chip Implementation Center, Hsinchu Science Park, Taiwan, ROC, http://www.cic.org.tw.
    [40] H. Xie, G. K. Fedder, “Fabrication, Characterization, and Analysis of a DRIE CMOS–MEMS Gyroscope,” IEEE Sens. J., vol. 3, pp. 622-631, 2003.
    [41] Advanced Micro & Nanosystems 2, “CMOS-MEMS,” O. Brand and G. K. Fedder, Wiley-VCH, 2005
    [42] H. Luo, G. Zhang, R. Carley and G. K. Fedder, “A Post-CMOS Micromachined Lateral Accelerometer,” IEEE/ASME J. MEMS, pp. 188-195, 2002.
    [43] X. Liu, H. Zhang, G. Li, W. Chen, and X. Wang, “Design of Readout Circuits Used for Micro-Machined Capacitive Accelerometer,” Proc. 2nd IEEE Conf. on Nano/Micro Engineered and Molecular Systems, pp. 537-541, 2007.
    [44] A. Ambardar, “Analog and Digital Signal Processing,” Brooks/Cole, 1999, Ch.8.
    [45] D. Johns and K. Martin, “Analog Integrated Circuit Design,” New York, Wiley, 1997.
    [46] B. Razavi, “Design of Analog CMOS Integrated Circuits.” New York, McGraw-Hill, 2001.
    [47] H. Yu, B. Li and X. Zhang, “Flexible Fabrication of Three-Dimensional Multi-Layered Microstructures Using a Scanning Laser System,” Sens. Actuators A, vol. 125, pp. 553-564, 2006.
    [48] H. Sato, D. Yagyu, S. Ito and S. Shoji, “Improved Inclined Multi-Lithography Using Water as Exposure Medium and Its 3D Mixing Microchannel Application,” Sens. Actuators A, vol. 128, pp. 183-190, 2006.
    [49] S. H. Huang and F. G. Tseng, “Development of a Monolithic Total Internal Reflection-Based Biochip Utilizing a Microprism Array for Fluorescence Sensing,” J. Micromech. Microeng., vol. 15, pp. 2235-2242, 2005.
    [50] Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya and O. Tabata, “Moving Mask UV Lithography for Three-Dimensional Structuring,” J. Micromech. Microeng, vol. 17, pp. 199-206, 2007.
    [51] H. C. Tsai, Y. R. Chang, H. K. Chen and T. K. Shing, “Novel Photolithography to Perform the Oblique Microstructure,” IEEE 19th MEMS Conf., pp. 350-353, 2006.
    [52] Y. J. Huang, T. L. Chang, H. P. Chou and C. H. Lin, “A Novel Fabrication Method for Forming Inclined Groove-Based Microstructures Using the Optical-Element,” J. J. Appl. Phys., vol 47, pp. 5287-5290, 2008.
    [53] H. Zhu, R. Lindquist, “Profile Control in Isotropic Plasma Etching,” Proc. ASMC’92, Cambridge, pp. 329, 1992.
    [54] Y. J. Huang, H. P. Chou and T. L. Chang, 2008, “Nanopatterning Stamps of Anti-Adhesive Self-Assembly Monolayer by Nanoimprint Lithography,” 1st Asian Symposium on Nano Imprint Lithography, pp. 106-107, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE