簡易檢索 / 詳目顯示

研究生: 王儷霖
Wang, Lilin
論文名稱: 交叉重疊式凹槽微混合器之設計與流場分析
Design and Analysis of Overlapping-Crisscross Micromixers
指導教授: 楊鏡堂
Yang, Jing-Tang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 111
中文關鍵詞: 微通道微流體微混合器混沌式混合
外文關鍵詞: microchannel, microfluidics, micromixer, chaotic mixing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文特提出一款創新型微混合器,引入交叉重疊式入口之設計理論並製作實體加以驗證,以提昇凹槽式微混合器入口區段的混合效率。該款微型混合器同時整合兩種構成混沌混合模式的重要元素,其一來自於交叉重疊式設計造成局部流場中央存在的雙曲線點,該點兩側流場以共方向旋轉方式流動;其二則由於混合腔壁面包含有不對稱的凹槽結構設計,在凹槽頂點下方存在的拋物線點兩側流場,則沿著斜向溝槽反向進行旋轉。對於這種綜合兩種混沌混合模式的複雜流場,在兩者整合後是否能產生加乘混合的效果,相當值得深入研究。因此本論文研究將分為數值模擬與流場觀測實驗兩部分,深入分析對於交叉重疊式微混合器之複雜流場結構暨其混合機制。
    在數值分析方面,本文建立物理問題的流場模型,特別針對常見的數值誤差如網格獨立問題及數值擴散影響進行檢測。確立數值計算的可信度後,便得以開始進行分析。本文針對混合裝置的重點設計(交叉重疊結構及凹槽式微混合腔體)進行系統性的分析,分析結果顯示,前者對於流場的作用主要分為兩方面,(1)交叉重疊結構如同一個交通樞鈕,匯集並重新分配流動方向,(2)滾流作用大幅增進進口流匯集處的對流作用,流場中央靠近鞍點的區域每間隔兩組交叉重疊結構,均勻混合的區域呈現指數型成長。在深入探討凹槽式微混合腔體的混合特性後,也得到幾個設計重點:(1)流體層進入混合腔的型態,會直接影響到下游的混合效率,(2)凹槽結構的配置位置,對於反向螺旋運動打破流體層界面與否息息相關,(3)凹槽的不對稱性造成流體層一旦被打破會形成大小不一的區塊,分割之小型區塊容易在一連串的對流過程中被均勻混合。定量估算流經12個凹槽結構配置後截面濃度場的混合指標趨勢,合理解釋了上述所歸納分析出,影響混合效果的幾何因素。結果顯示凹槽方向呈交錯式配置的SOC μ-mixer混合效果優於OC μ-mixer約21%;至於凹槽方向一致的OC μ-mixer與 staggered herringbone mixer的混合效果,前者則優於後者約46 %。
    經過系統性的分析討論數值流場的混合機制,本文發展三種流場可視化實驗,包含染料實驗、化學反應實驗以及共軛焦雷射掃瞄螢光實驗,以驗證數值流場的真實性。由於染料實驗在穿透光的觀測之下對比度不夠強烈,因此在觀測上僅能獲得概略的流場資訊。化學反應實驗以稀釋過的酚酞溶液與氫氧化鈉溶液進行混合實驗,兩流體接觸後產生反應形成紫紅色分布,可用以直接觀測微混合裝置在流場中充份混合區域。為了比對數值分析流場與實驗流場結果,必須試圖修正穿透光觀測之流場影像,造成焦聚面周圍的所有影像投影在成像螢幕上顯示,在檢閱時難以分辨該立體影像的實際位置來源的缺點。為此本文將數值流場沿z軸變化的所有截面濃度圖予以透明化處理並逐層堆疊,截面影像每間隔10 μm擷取一次,形成與化學反應實驗流場之穿透光影像一致的穿透流場圖。另一種解決方法為使用共軛焦雷射掃描顯微技術觀測螢光微粒在混合裝置中的混合散佈行為,由於該技術具有消除非聚焦面雜訊的特性,所擷取的二維影像可被用以驗證數值流場。比對結果顯示數值流場與實驗影像吻合,如此一來將可掌握微混合系統之整體流場特性,預期對於生化檢測系統之微縮化研究具有相當之貢獻。


    We successfully develop a novel PDMS-based microfluidics mixer, which incorporates an overlapping crisscross entrance with patterned microchannels, and acts as a high-performance micromixer. Such an entrance design generates significant tumbling and brings about axial advection between mixing fluids. The systematic numerical analysis and experimental investigation have been performed to identify the characteristics of the device. The microfludics-based mixer is recently becoming a prevalent study for widely application in genetic sequencing, environmental monitoring and drug delivery. Among those researches, passive mixing plays one of the major roles due to its low cost and easy fabrication. Microsacle mixing of two aqueous solutions is usually done by advection and diffusion. Generating flow fluctuation significantly enhances flow folding and stretching and results in the improvement of mixing process. For fluids in the Stokes flow field, however, the inertia of flow diminishes and the effective mixing by modulating advection turns into the main challenge of designing new micromixer. In addition, reducing the characteristic length of diffusion or increasing residence time of the fluids evolves the molecular diffusion inside the microchannels. With all these concerns, the present work presents a microfludics configuration comprising two patterned microchannels with one crossing on top of the other. Two chaotic mixing mechanisms are also comprised: (1) twisting and reorienting of the split streams through the first overlapping crisscross junction and (2) merging and re-stretching by the hyperbolic flow at next junction. Both the results of flow visualization and numerical simulation reveal that such a design stimulates significant three-dimensional crossflow at the intersection of two channels and also induces strong helical flow motion in the following mixing channels. The vertical tumbling behavior redistributes the downstream flow pattern to enlarge the interfacial area and to promote axial advection between two mixing fluids. The transversal momentum generated by the device contributes to agitate the streams to mix well. The pressure distribution and mixing performance also become superior as compared with that of T-type grooved micromixer. Numerical analysis shows that although the molecular diffusion is detracted at a greater Reynolds number due to less residence time, the enhancement of the advances between mixing fluids is more overwhelming. This novel design is thus applicable for a much wider range of Reynolds number. The variation of the ratio of two initial flow rates controls the mass transfer rates in the two channels and is possibly extensible to be a satisfactory active micromixer.

    目 錄 中文摘要 i 英文摘要 iv 致 謝 vi 目 錄 vii 圖表目錄 ix 符號說明 xii 第一章 前 言 - 1 - 1-1 研究背景 - 1 - 1-2 研究動機與目的 - 4 - 第二章 文獻回顧 - 5 - 2-1 擴散式混合 - 7 - 2-2 混沌式混合 - 10 - 2-3 混合實驗 - 14 - 第三章 研究方法 - 16 - 3-1 微混合裝置之研製 - 17 - 3-2 數值模擬分析 - 21 - 3-2.1 物理流場設定 - 21 - 3-2.2 網格建立與網格獨立測試 - 23 - 3-2.3 數值擴散誤差 - 31 - 3-3 製程規劃 - 32 - 3-3.1 製程介紹 - 32 - 3-3.2 軟微影製作流程 - 40 - 3-4 實驗設計 - 48 - 3-4.1 染料實驗 - 49 - 3-4.2 化學反應實驗 - 50 - 3-4.3 共軛焦雷射掃瞄螢光實驗 - 50 - 第四章 結果與討論 - 56 - 4-1 入口區段流場型態 - 56 - 4-2 混沌理論與流場基本型態 - 61 - 4-3 實際混合流場分析 - 67 - 4-4 混合指數分析 - 75 - 4-5 混合流場實驗觀測 - 85 - 第五章 結論與未來展望 - 101 - 參考文獻 - 106 - 個人履歷 - 112 - □ 個人資料 - 112 - □ 歷年研究著作 - 113 - 圖表目錄 表3-1 交叉重疊式凹槽微混合器之幾何設計參數。 - 18 - 表3-2 網格獨立分析案例。 - 26 - 表3-3 離散誤差估算表。 - 30 - 表3-4 SU-8 2000系列光阻的物理性質。 - 38 - 表3-5 曝光劑量與光阻厚度關係。 - 42 - 圖1-1 進行生化檢測之基本流程。 - 3 - 圖2-2 擴散混合的概念示意圖。 - 7 - 圖2-3 方形管流形成完全發展流之速度場分佈示意圖。 - 8 - 圖3-1 研究流程。 - 17 - 圖3-2 交叉重疊式凹槽微混合器示意圖。 - 19 - 圖3-3 交叉重疊式凹槽微混合器的設計系列。 - 20 - 圖3-4 網格切割分佈圖。 - 25 - 圖3-10 以環氧基為基本結構的SU-8負型光阻。 - 37 - 圖3-11 SU-8光阻在不同型號及黏滯度條件下,單次旋鍍之轉速與厚度關係。......................................................................................................................- 39 - 圖 3-12 微流道製作組裝流程。 - 40 - 圖3-13 加熱板。 - 41 - 圖3-14 旋鍍機。 - 41 - 圖3-15 數位式輻射計。 - 43 - 圖3-16 曝光機。 - 43 - 圖3-19 (a)以SU-8黃光製程定義之矽晶片母模與(b)PDMS翻模成品。......................................................................................................................- 47 - 圖3-21 流場觀測系統示意圖。 - 48 - 圖3-23 以一般螢光顯微鏡拍攝之螢光激發影像包含有來自非聚焦面的雜訊。......................................................................................................................- 51 - 圖3-24 以針孔濾除來自非聚焦面的雜訊。 - 52 - 圖3-25 共軛焦雷射掃瞄系統光路示意圖。 - 53 - 圖3-26 螢光微粒子及其紅色放射光成像。 - 54 - 圖3-27 單光子雷射共軛焦顯微鏡LSM 510。 - 55 - 圖3-28 LSM510光路系統。 - 55 - 圖4-1 進口流在(a)T型入口與(b)交叉重疊式入口區段的匯集情形。......................................................................................................................- 56 - 圖4-5 不同體積流率比的壓力差關係圖。 - 61 - 圖4-8 四組指定的進口流線流過SHM前2個凹槽分佈的後視圖。 - 64 - 圖4-9 交叉重疊直管在各節點之截面濃度與投影速度分佈。 - 65 - 圖4-10 (a)OC □-mixer與(b)SHM整體混合流場圖。 - 67 - 圖4-11 (a-b, d)OC □-mixer與(c)SHM 下游混合腔之截面濃度分佈圖與流線後視圖。 - 70 - 圖4-12 (a-b)OC □-mixer與(c)SHM 平行混合腔軸向截面濃度分佈圖。 ………………………………………………………………………...- 71 - 圖4-15 四種微混合器下游混合腔之截面濃度分佈圖。 - 74 - 圖4-16 各種微混合器下游混合腔之混合指數分佈圖。 - 77 - 圖4-17 不同雷諾數條件下下游混合腔之混合指數分佈圖。 - 78 - 圖4-18 流經兩組交叉重疊節點之截面濃度與投影速度分佈。 - 81 - 圖4-19 流經四組交叉重疊節點之整體濃度分佈。 - 82 - 圖4-20 流經四組交叉重疊節點之截面濃度與流線分佈。 - 83 - 圖4-21 流經兩組交叉重疊節點之截面濃度與流線分佈。 - 84 - 圖4-23 配置交錯式凹槽的T型微混合器之酚酞實驗流場影像。 - 91 - 圖4-23 配置交錯式凹槽的T型微混合器之酚酞實驗流場影像。 - 92 - 圖4-24 配置交錯式凹槽的T型微混合器之酚酞實驗流場影像。 - 93 - 圖4-24 配置交錯式凹槽的T型微混合器之酚酞實驗流場影像。 - 94 - 圖4-25 配置交錯式凹槽的T型微混合器堆疊z軸數值截面濃度場結果。- 95 - 圖4-27 速度分別為(a)uc = 0.5 U與(b)uc = 5 U之交叉重疊式交錯凹槽微型混合器之酚酞實驗流場影像。 - 97 - 圖4-28 交叉重疊式交錯凹槽微型混合器之酚酞實驗流場影像。 - 98 -

    Anderson, Jr., J. D., Computational Fluid Dynamics, Mc Draw-Hill, 1995.
    Aref, H., “Stirring by chaotic advection,” Journal of Fluid Mechanical, Vol. 143, pp. 1-21, 1984.
    Brody, J. P. and Yager, P. “Diffusion-Based Extraction in a Microfabricated Device,” Sensors and Actuators A, Vol. 58, pp. 13-18, 1997.
    Celik, I. B. “Procedure for estimation and reporting of discretization error in CFD application,” Journal of Fluids Engineering editorial policy statement on the control of numerical accuracy.
    Einstein, A., Investigations on the Theory of the Brownian Movement, Dover Publications, 1956.
    Engler, M., Kockmann, N., Kiefer, T. and Woias, P., “Numerical and experimental investigation on liquid mixing in static micromixers,” Chemical Engineering Journal, Vol. 101, pp. 315-322, 2004.
    Gelorme, J. D., Cox, R. J. and Gutierrez, S. A. R. “Photoresist composition and printed circuit boards and packages made therewith,” United States Patent, Patent Number 4882245, 1989.
    Gooby, D., Angeli, P. and Gavriilidis, A., “Mixing characteristics of T-type microfluidic mixers,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 126-132, 2001.
    Hessel, V., Hardt, S., Löwe, H. and Schönfeld, F., “Laminar mixing in different interdigital micromixers:I. experimental characterization,” AICHE, Vol. 49, pp. 566-577, 2003.
    Hessel, V., Löwe, H. and Schönfeld, F., “Micromixers—a review on passive and active mixing principles,” Chemical Engineering Science, Vol. 60, pp. 2479-2501, 2005.
    Hong, S., Thiffeault, J. L., Fréchette, L. and Modi, V., “Numerical study of mixing in microchannels with patterned zeta potential surfaces,” Proceedings of IMECE’03 ASME International Mechanical Engineering Congress & Exposition, IMECE2003-41912, Washington, D.C., November 16-21, 2003.
    Ismagilov, R. F., Stroock, A. D., Kenis, P. J. A. and Whitesides, G., “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Applied Physics Letters, Vol. 76, pp. 17-24, 2000.
    Ismagilov, R. F., Rosmarin, D., Kenis, P. J. A., Chiu, D. T., Zhang, W., Stone, H. A. and Whitesides, G. M. “Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch,” Analytical Chemistry, Vol. 73, pp. 4682-4687, 2001.
    Johnson, T. J., Ross, D. and Locascio, L. E., “Rapid microfluidic mixing,” Analytical Chemistry, Vol. 74, pp. 45-51, 2002.
    Kamholz, A. E., Weigl, B. H., Finlayson, B. A. and Yager, P., “Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor,” Analytical Chemistry, vol. 71, No. 23, pp.5340-5347, 1999.
    Kamholz, A. E. and Yager, P., “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels,” Biophysical Journal , vol. 80, pp.155-160, 2001.
    Kim, D. S., Lee, S. W., Kwon, T. H. and Lee, S. S., “A barrier embedded chaotic micromixer,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 798-805, 2004.
    Knight, J. B., Vishwanath, A., Brody, J. P. and Austin, R. H., “Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds,” Physical Review Letters, Vol. 80, pp. 3863-3866, 1998.
    Lee, S. W., Kim, D. S., Lee, S. S. and Kwon, T. H., “A split and recombination mcromixer fabricated in a PDMS three-dimensional structure,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 1067-1072, 2006.
    Lee, Y. K., Deval, J., Tabeling P. and Ho, C. M., “Chaotic mixing in electrokinetically and pressure driven micro flows,” The 14th IEEE Workshop on MEMS, Interlaken, Switzerland, pp. 483, Jan., 2001.
    Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., “Passive mixing in a three-dimensional serpentine microchannel,” Journal of Microelectromechanical Systems, Vol. 9, pp. 190-197, 2000.
    Lu, L. H., Ryu, K. S. and Liu, C., “A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, Vol. 11, No. 5, Oct., 2002.
    Manz, A., Graber, N. and Widmer, H. M., “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and Actuators, B1, Vol. 1, pp. 244-248, 1990.
    Meta, A., Boehm, C., Fleischman, A. J., Muschler, G., and Roy, S., “Analysis of connective tissue progenitor cell behavior on polydimethylsiloxane smooth and channel micro-textures,” Biomedical Microdevice, Vol. 4, pp. 267-275, 2002.
    Nguyen, N. T. and Wu, Z., “Micromixers-a review,” Journal of Micromechanics and Microengineering, Vol. 15, pp. R1-R16, 2005.
    Ottino, J. M., The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge, Cambridge University Press, 1989.
    Paik, P., Pamula, V. K., Pollack, M. G. and Fair, R. B., “Electrowetting-based droplet mixers for microfluidic systems,” Lab Chip, Vol. 3, pp. 28-33, 2003.
    Park, J. S., Choi, C. K. and Kihm, K. D. “Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM),” Experiments in Fluids, Vol. 37, pp. 105-119, 2004.
    Petersen, K. E., McMillan, W. A., Kovacs, G. T. A., Northrup, M. A., Cristel, L. A. and Pourahmadi, F., “Toward next generation clinical diagnostic instrument: Scaling and new processing paradigms,” Biomedical Microdevices, Vol. 1, No. 1, pp. 71-79, 1998.
    Raffel, M., Willert, C. E. and Kompenhans, J., Particle Image Velocimetry, Springer-Verlag Berlin Heidelberg, 1998.
    Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J. and Adrian, R. J. “A particle image velocimetry system for microfluids,” Experiments in Fluids, Vol. 25, pp. 316-319, 1998.
    Schönfeld, F., Hessel, V. and Hofmann, C., “An optimized split-and-recombine micro-mixer with uniform ‘chaotic’ mixing,” Lab Chip, Vol. 4, pp. 65-69, 2004.
    Stern, F., Wilson, R. V., Coleman, H. W. and Paterson, E. G., “Comprehensive approach to verification and validation of CFD simulations—Part 1: methodology and procedures,” Journal of Fluids Engineering, Vol. 123, pp. 298-802, 2001.
    Stix, G., “Soft manufacturing,” Scientific American, Vol. 287, No. 2, pp. 30-1, 2002.
    Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A. and Whitesides, G. M., “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651., 2002.
    Suzuki, H. and Ho, C.-M., “A chaotic mixer for magnetic bead-based micro cell sorter,” Journal of Microelectromechanical Systems, Vol. 13, No. 5, Oct., 2004.
    Van Doormal J. P. and Raothby, G. D. “Enhancement of the SIMPLE method for predicting incompressible fluid flow,” Numerical Heat Transfer, Vol. 7, pp. 147-163.
    Vivek, V., Zeng, Y. and Kim, E. S., “Novel acoustic-wave micromixer,” IEEE International Micro Electro Mechanical Systems Conference, Mayazaki, Japan, pp. 668-673, January 23-27, 2000.
    Wang, H., Iovenitti, P., Harvey, E. and Masood, S., “Numerical investigation of mixing in microchannels with patterned grooves,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 801-808, 2003.
    Weigl, B. H., and Yager, P., “Silicon-microfabricated diffusion-based optical sensor,” Sensors and Actuators B, Vol. 38, pp. 452-457, 1997.
    Wolf, A., Swift, J. B., Swinney, H. L. and Vastano, J. A., “Determining Lyapunov exponent from a time series,” Physica 16D, pp. 285-317, 1985.
    Xia, H. M., Wan, S. Y. M., Shu, C. and Chew, Y. T., “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers,” Lab Chip, Vol. 5, pp. 748-755, 2005.
    Xia, H. M., Shu, C., Wan, S. Y. M. and Chew, Y. T., “Influence of the Reynolds number on chaotic mixing in a spatially periodic micromixer and ita characterization using dynamical system techniques,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 53-61, 2006.
    Yang, Z., Goto, H., Matsumoto, M. and Maeda, R., “Active micromixer for microfluidic systems using lead-zirconate-titanate(PZT)-generated unltrasonic vibration,” Electrophoresis, Vol. 21, pp. 116-119, 2000.
    SU-8 Resists Datasheets by MicroChem Corp. (www.microchem.com)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE