簡易檢索 / 詳目顯示

研究生: 董祐華
Dong, Yo-Hua
論文名稱: 任意步幅與轉彎角度之雙足機器人軌跡規劃與運動學動力學混成控制
Trajectory Planning and Hybrid Kinematic-Dynamic Control of a Biped Robot with Arbitrary Step Lengths and Turning Angles
指導教授: 葉廷仁
Yeh, Ting-Jen
口試委員: 劉承賢
Liu, Cheng-Hsien
林紀穎
Lin, Chi-Ying
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 64
中文關鍵詞: 機器人平面行走任意步幅任意轉彎角度運動學動力學混成控制
外文關鍵詞: robot planar walking, arbitrary stride length, arbitrary turning angle, hybrid kinematic-dynamic control
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出的跡規劃方法,可以使機器人在平面上實現任意步態行走,包括前進、後退、轉彎和原地踏步等動作。我們的方法規劃了骨盆、支撐腳掌和擺動腳掌的六自由度軌跡(包括三個位置和三個姿態)。骨盆軌跡基於零力矩點(ZMP)設計和預觀控制生成;擺動腳軌跡通過多項式插值進行規劃;姿態軌跡則主要考慮航向角(Yaw Angle)的變化。除了軌跡規劃,本研究先以純運動學控制驗證軌跡與預期目標一致,接著通過運動學與動力學混合控制實現雙足機器人的行走。基於上述架構,我們在MATLAB Simscape中進行物理環境的模擬,並使用實驗室的機器人做實驗,進一步確認軌跡的可行性與控制方法的可靠性。


    The trajectory planning method proposed in this thesis enables a robot to perform arbitrary gait movements on a plane, including forward walking, backward walking, turning, and in-place stepping. Our approach involves planning six-degree-of-freedom trajectories for the pelvis, supporting foot, and swinging foot (including three positions and three orientations). The pelvis trajectory is generated based on Zero Moment Point (ZMP) design and preview control; the swinging foot trajectory is planned using polynomial interpolation; and the posture trajectory primarily considers changes in the yaw angle. In addition to trajectory planning, this study first uses pure kinematic control to verify the consistency of the trajectory with the intended target, and then realizes bipedal robot walking through hybrid kinematic-dynamic control. Based on this framework, we conducted simulations in the MATLAB Simscape environment and performed experiments with a laboratory robot to further confirm the feasibility of the trajectory and the reliability of the control method.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 名詞定義與縮寫 ix 1. 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 研究繼承與預期貢獻 4 2. 機電架構 6 2.1 機構設計與硬體選用 6 2.2 電路系統整合 9 3. 雙足機器人基本理論 11 3.1 單支撐與雙支撐 11 3.2 支撐多邊形 12 3.3 腳掌壓力中心與零力矩點 12 3.4 線性倒單擺(Linear Inverted Pendulum, LIP) 15 3.5 運動學 16 3.5.1 運動鏈 16 3.5.2 順向運動學 17 3.5.3 逆向運動學 20 4. 軌跡規劃 22 4.1 絕對與相對的位置和姿態 22 4.1.1 絕對位置與相對位置 23 4.1.2 以Z-Y’-X’’歐拉角表示的絕對姿態與相對姿態 25 4.2 軌跡規劃流程 26 4.2.1 置足座標系生成 27 4.2.2 直走之擺動腳掌、支撐腳掌與骨盆之位置軌跡規劃 29 4.2.3 擺動腳掌、支撐腳掌與骨盆姿態軌跡規劃 32 4.3 多項式插值(Polynomial Interpolation) 34 4.3.1 擺動腳軌跡 34 4.3.2 ZMP軌跡 36 4.4 預觀控制(Preview Control) 38 5. 運動控制 42 5.1 運動學控制 42 5.2 運動學與動力學混成控制 43 5.2.1 SS支撐腳髖、膝關節轉速控制 44 5.2.2 SS支撐腳踝關節扭矩控制 45 5.2.3 SS擺動腳髖、膝關節轉速控制 48 5.2.4 SS擺動腳踝關節扭矩控制 49 5.2.5 DS雙腳控制 50 6. 模擬與實驗結果 51 6.1 行走模擬 51 6.1.1 軌跡規劃與純運動學控制模擬 52 6.1.2 軌跡規劃與混成控制模擬 54 6.2 行走實驗 57 6.2.1 軌跡規劃與運動學控制實驗 57 6.2.2 軌跡規劃與混成控制實驗 57 7. 結論與未來工作 60 7.1 結論 60 7.2 未來工作 60 8. 參考文獻 62

    [1] "FANUC M-1000iA." FANUC America Corporation. https://www.fanucamerica.com/products/robots/series/m-1000ia (accessed 12/13, 2023).
    [2] "送餐機器人." Hong Chiang Technology Co., LTD. https://www.hong-chiang.com.tw/zh-TW/category/K.html (accessed 12/13, 2023).
    [3] "AI & Robotics." Tesla. https://www.tesla.com/AI (accessed 12/13, 2023).
    [4] K. Kim, P. Spieler, E.-S. Lupu, A. Ramezani, and S.-J. Chung, "A bipedal walking robot that can fly, slackline, and skateboard," Science Robotics, vol. 6, no. 59, p. eabf8136, 2021.
    [5] V. Scott Dresser, Amazon Robotics. "Amazon announces 2 new ways it's using robots to assist employees and deliver for customers." Amazon Robotics. https://www.aboutamazon.com/news/operations/amazon-introduces-new-robotics-solutions (accessed June 25, 2024).
    [6] U. o. website. "Unitree." Unitree official website. https://www.unitree.com/ (accessed June 25, 2024).
    [7] U. Robotics. "Introducing Unitree H1: Its First General-purpose Humanoid Robot| Embodied AI Price below $90k." https://youtu.be/GtPs_ygfaEA?si=_yp0GxNtmj8rCmc8 (accessed June 25, 2024).
    [8] C. Zhang, W. Xiao, T. He, and G. Shi, "WoCoCo: Learning Whole-Body Humanoid Control with Sequential Contacts," arXiv preprint arXiv:2406.06005, 2024.
    [9] T. He et al., "Learning human-to-humanoid real-time whole-body teleoperation," arXiv preprint arXiv:2403.04436, 2024.
    [10] A. Takanishi, M. Ishida, Y. Yamazaki, and I. Kato, "The realization of dynamic walking by the biped walking robot wl-10 rd," Journal of the Robotics Society of Japan, vol. 3, no. 4, pp. 325-336, 1985.
    [11] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, "The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation," in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), 2001, vol. 1: IEEE, pp. 239-246.
    [12] C. Stanton, A. Bogdanovych, and E. Ratanasena, "Teleoperation of a humanoid robot using full-body motion capture, example movements, and machine learning," in Proc. Australasian Conference on Robotics and Automation, 2012, vol. 8, p. 51.
    [13] S. Kajita et al., "Biped walking pattern generation by using preview control of zero-moment point," in 2003 IEEE international conference on robotics and automation (Cat. No. 03CH37422), 2003, vol. 2: IEEE, pp. 1620-1626.
    [14] 蔡禾庭, "整合重心估測與力矩控制於提昇雙足機器人行走穩定性," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2017. [Online]. Available: https://hdl.handle.net/11296/vmjprx
    [15] 鄭逸倫, "整合力矩控制與重心估測並利用增強式學習提升雙足機器人行走穩定性," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2018. [Online]. Available: https://hdl.handle.net/11296/7yfthz
    [16] 殷昭駿, "基於預觀控制之步態規劃於運動學與動力學混成控制之雙足機器人," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2021. [Online]. Available: https://hdl.handle.net/11296/pjs823
    [17] 邱笠維, "應用強化學習於混成控制雙足機器人之步態規劃," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2022. [Online]. Available: https://hdl.handle.net/11296/e2sd3w
    [18] 楊景苡, "運動學與動力學混成控制雙足機器人之蹺蹺板平衡研究," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2023. [Online]. Available: https://hdl.handle.net/11296/zw6bu5
    [19] "DYNAMIXEL Protocol 2.0." ROBOTICS. https://emanual.robotis.com/docs/en/dxl/protocol2/ (accessed December 11, 2023).
    [20] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to humanoid robotics. Springer, 2014.
    [21] M. Vukobratovic, B. Borovac, D. Surla, and D. Stokic, Biped locomotion: dynamics, stability, control and application. Springer Science & Business Media, 2012.
    [22] M. Vukobratović and B. Borovac, "Zero-moment point—thirty five years of its life," International journal of humanoid robotics, vol. 1, no. 01, pp. 157-173, 2004.
    [23] M. Vukobratović and J. Stepanenko, "On the stability of anthropomorphic systems," Mathematical biosciences, vol. 15, no. 1-2, pp. 1-37, 1972.
    [24] D. T. Greenwood, "Advanced dynamics," (No Title), 2003.
    [25] T. Katayama, T. Ohki, T. Inoue, and T. Kato, "Design of an optimal controller for a discrete-time system subject to previewable demand," International Journal of Control, vol. 41, no. 3, pp. 677-699, 1985.

    QR CODE