簡易檢索 / 詳目顯示

研究生: 劉哲誌
Liu, Che-Chih
論文名稱: 一個時空碼的設計於多重存取頻率非選擇性衰退通道下之分集與多工增益權衡之研究
A Study of Diversity-Multiplexing Tradeoff of a Space-Time Code Design over Multiple Access Frequency-Nonselective Fading Channels
指導教授: 呂忠津
Lu, Chung-Chin
口試委員: 林茂昭
Lin, Mao-Chao
蘇育德
Su, Yu-The
蘇賜麟
Su, Szu-Lin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 60
中文關鍵詞: 時間空間碼設計之線性調變分集增益多工增益分集與多工增益權衡多重存取頻率非選擇性衰退通道時間空間碼設計
外文關鍵詞: Diversity-Multiplexing Tradeoff, Space-Time Code Design, Multiple Access Frequency-Nonselective Fading Channels, Diversity-Multiplexing Tradeoff for Multi-User, Space-Time Code Design for Multi-User, Division Algebra
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代社會中,行動通訊及多媒體設備已成為人們不可或缺的一部分。高速且穩定的無線網路對我們而言相當重要,滿足此需求的關鍵在於增加無線通訊傳輸通道之容量 (Channel Capacity)。其中,最直接的方式為增加傳輸頻寬,亦即使用寬頻無線通訊。然而,在實際應用中,可供使用之頻寬卻是有限的。另一種在無線通訊中有效獲得高速傳輸的方法,是使用多輸入多輸出無線通訊系統 (MIMO),即是擁有多根傳輸天線和多根接收天線之系統。此系統之優勢在於:傳輸通道之容量會與傳輸天線及接收天線數量呈線性增加。而在多重存取通道 (Multiple Access Channel) 中,多使用者多輸入多輸出系統 (MU-MIMO, Multi-User MIMO) 可進一步提升頻寬之使用效率。時間空間碼 (Space-Time Code) 為一種多輸入多輸出系統之應用方式,此技術能夠提高頻譜效率和降低錯誤率。可除性代數 (Division Algebra) 為設計時間空間碼時,一個相當實用且常見之數學工具。分集與多工增益之權衡 (Diversity-Multiplexing Tradeoff) 是評估時間空間碼效能高低的公平比較準則。在本篇論文中,我們推導出在多重存取頻率非選擇性衰退通道 (Multiple Access Frequency-Nonselective Fading Channels) 下,線性調變的時間空間碼設計準則。此文使用了最佳的迴旋邊碼器 (Convolutional Encoder),並且設計一個簡單且基於可除性代數之最佳空間編碼器。接著,推導出此文中時間空間碼在單一使用者和多使用者情形下之分集與多工增益之權衡。和傳統最佳時間空間碼之分集與多工增益權衡比較後可以得到:在低多工增益 (Multiplexing Gain) 的情況下,本文系統不論單一使用者或多使用者,其分集增益 (Diversity Gain) 皆比傳統最佳時間空間碼之分集增益大上許多。然而,在此系統中,多工增益無法達到傳統最佳時間空間碼之最大多工增益可能值。


    In this thesis, we derived the rank design criterion of a space-time coding scheme for
    linear modulation over multiple access frequency-nonselective fast fading channels
    and gave a simple code construction for multiple access channels.
    We also evaluated the diversity and multiplexing tradeoffs under both single and
    multiple users cases. We observed that the diversity gain of our space-time coding
    scheme is greater than that of the uncoded optimal one in low multiplexing gain, but
    is smaller in high multiplexing gain.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 A Scheme for Space-Time Coding with Linear Modulation in Multiple Access Channels . . . . . . . . . . . . . . . . . . . . . . . . . . .6 2.1 A Space-Time Coding Scheme for Mutiple Users . . . . . . . . . . 6 2.2 Space-Time Code Design Criterion for QAM Modulation . . . . . . 10 3 Space-Time Encoder for Two Users Design . . . . . . . . . . . . . 21 3.1 Convolutional Encoder for Each User . . . . . . . . . . . . . . 21 3.2 Galois Theory . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Galois Group . . . . . . . . . . . . . . . . . . . . . . . . .22 3.2.2 Galois Extension . . . . . . . . . . . . . . . . . . . . . . .23 3.2.3 Cyclic extension . . . . . . . . . . . . . . . . . . . . . . .24 3.2.4 Division Ring . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Explicit Two-User Code of The Spatial Encoder for Lt = 2 . . . .28 3.3.1 Code Design with Full Rank Differences Matrices for Two User .29 4 The Diversity and Multiplexing Tradeoff of a Space-Time Code Design 32 4.1 The Optimal Diversity and Multiplexing Tradeoff of Space-Time Code 32 4.1.1 The Optimal Diversity and Multiplexing Tradeoff of Space- Time Code for Single User . . . . . . . . . . . . . . . . . . . . . 32 4.1.2 The Optimal Diversity and Multiplexing Tradeoff of Space- Time Code for Multiple Users . . . . . . . . . . . . . . . . . . . .39 4.2 A Lower Bound for Diversity and Multiplexing Tradeoff of The Proposed Space-Time Code . . . . . . . . . . . . . . . . . . . . . .40 4.3 The D-M Tradeoff of the Proposed Space-Time Coding Scheme with Approximately Universal Spatial Codes . . . . . . . . . . . . . . . 43 4.3.1 The D-M Tradeoff of the Proposed Space-Time Coding Scheme with Approximately Universal Spatial Codes for Single User . . . . .44 4.3.2 The D-M Tradeoff of the Proposed Space-Time Coding Scheme with Approximately Universal Spatial Codes for Two Users . . . . . . . . 51 5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . 57

    [1] I. E. Teletar, ”Capacity of multi-antenna Gaussian channels,” Europ. Trans.
    Telecom-mun., vol. 10, pp. 585-595, Nov./Dec. 1999.
    [2] V. Tarokh, N. Seshadri, and A. R. Calderbank, ”Space-time codes for high data
    rate wireless communication: performance criterion and code construction,” IEEE
    Trans. Inform. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998.
    [3] S. M. Alamouti, ”A simple transmit diversity technique for wireless communications,”
    IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998. IEEE
    Trans. Commun., vol. 47, Apr 1999.
    [4] B. A. Sethuraman, B. S. Rajan, and V. Shashidhar, ”Full-diversity, high-rate
    space- time block codes from division algebras,” IEEE Trans. Inform. Theory,
    vol. 49, no. 10, pp. 2596-2616, Oct. 2003.
    [5] C.-C. Cheng and C.-C. Lu, ”Space-time code design for CPFSK modulation over
    frequency-nonselective fading channels,” IEEE Trans. Commun.,vol. 53, no. 9,
    pp. 1477-1489, Sep. 2005.
    [6] S.-C. Chou, ”A space-time code design for CPFSK modulation over frequencyselective
    fading channels,” Master’s thesis, National Tsing Hua University, Taiwan,
    2006.
    [7] M.-C. Shih, ”Space-time code design for QPSK modulation over frequency- nonselective
    fading channels,” Master’s thesis, National Tsing Hua University, Taiwan,
    2007.
    [8] H.-Y. Cheng, ”Space-time code design over frequency- nonselective fading channels
    by division algebras,” Master’s thesis, National Tsing Hua University, Taiwan,
    2008.
    [9] Y.-H. Lin, ”A receiver with oversampling for multipath fading channels,” Master’s
    thesis, National Tsing Hua University, Tai- wan, 1994.
    [10] C.-M. Li, ”Space-time code design for linear Modulation over Frequency- selective
    fading channels,” Master’s thesis, National Tsing Hua University, Tai-wan,
    2017.
    [11] L. Zheng and D. N. C. Tse, ”Diversity and multiplexing: A fundamental tradeoff
    in multiple- antenna channels,” IEEE Trans. Inform. Theory, vol. 49, no. 5,
    pp.1073-1096, May. 2003.
    [12] D. N. C. Tse and P. Viswanath and L. Zheng, ”Diversity and multiplexing tradeoff
    in multiple access channels,” IEEE Trans. Inform. Theory, vol. 50, no. 9,
    pp.1859-1874, Sep. 2004.
    [13] M. Badr and J. C. Belfiore, ”Distributed space-time block codes for the MIMO
    multiple access channels,” Proc. 2008 IEEE Int. Symp. Inf. Theory, Toronto, ON,
    Jul. 2008, pp. 2553-2557.
    [14] S. Tavildar and P. Viswanath, ”Approximately universal codes over slow-fading
    channels,” IEEE Trans. Inform. Theory, vol. 52, no. 7, pp.3233-3258, Jul. 2006.
    [15] F. Oggier. J-C Belfiore and E. Viterbo, ”Cyclic division algebras: A tool for
    space-time coding,” Foundations and Trends in Communications and Information
    Theory, vol. 4, pp. 1-95, Jan. 2007.
    [16] H. F. Lu, R. Vehkalahti, C. Hollanti, J. Lahtonen, Y. Hong, and E. Viterbo, ”New
    space-time code constructions for two-user mutiple access channels,” IEEE Journal
    of Selected Topics in Signal Processing., vol. 3, No. 6, pp.939-957, Dec 2009.
    [17] C.-C. Lu and J.-P. Chen, An optimal test of Zq-convolutional coded CPFSK for
    communications over Rayleigh fading channels,” to be submitted for publication.
    [18] I. N. Herstein, Abstract Algebra, 3rd edn. January 30, 1996.
    [19] R. J. McEliece, Finite Fields for Computer Scientists and Engineers. Kluwer,
    1989.
    [20] J. G. Proakis, Digital Communications, 4th edn. McGraw-Hill, 2001.

    QR CODE