研究生: |
李欣黛 Hsin-Tai Li |
---|---|
論文名稱: |
稻米Bowman-Birk蛋白酶抑制素與牛胰蛋白酶複合物晶體結構與功能分析之研究 Crystal Structure and Functional Study of the Bowman-Birk Inhibitor from Rice Bran in Ternary Complex with Bovine Trypsin |
指導教授: |
吳文桂
Wen-Guey Wu 陳俊榮 Chun-Jung Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 單子葉植物 、蛋白酶抑制素 、植物與病蟲害系統 、稻米BBI |
外文關鍵詞: | Bowman-Birk Inhibitor, monocotyledonous plant, reactive-site loop, protease-inhibitor, plant-pest systems, RBTI |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從米糠純化得到的稻米胰蛋白酶抑制素(簡稱RBTI)是屬於Bowman-Birk抑制素(BBI)家族的一員,其分子量為15kDa。本研究中,一個RBTI分子與一個牛胰蛋白酶分子結合之複合物晶體結構是利用分子置換與電子密度修飾兩種方法而決定,在解析度至3 Å的繞射數據裡得到剩餘值為26.2%與自由剩餘值為31.6%。RBTI由七個平行折板與環線組成,不具有螺旋之二級結構,並且折疊成兩個分子量相當、較小的區域(稱為N-或C-區域),這兩個區域分別與大麥BBI具有相似的三級結構。但是RBTI兩個區域之間的方向連結與大麥BBI兩個區域之間的方向連結差異極大,這使得RBTI位於兩區域內的兩個與胰蛋白酶反應殘基相距只有23 Å,然而在大麥的例子裡,此距離為40 Å。這個較近的距離提供了證據支持活性測試的結果,RBTI兩區域裡的兩個分別的反應殘基具有不同的能力抑制胰蛋白酶,而位於RBTI C-區域P1’位置之向外指出的Met殘基是破壞反應區域的典型標準構造的主要原因。因此,RBTI主要與胰蛋白酶作用的區域為N-區域,但是C-區域也扮演了輔助的角色。
The 15-kDa trypsin inhibitors from rice bran (RBTI) are members of the Bowman-Birk protease inhibitor (BBI) family. The crystal structure of a 1:1 complex between RBTI and bovine pancreatic trypsin (BPT) was determined by combination of molecular replacement and electron density modification methods. This complex model has been refined to a crystallographic R-factor of 26.2% and free R-factor of 31.6% at 3.0 Å resolution. The RBTI structure consists of seven beta-strands and loops without alpha-helices structure and folds into two compact domains (N- and C-domain) which are similar to each domain from barley BBI. However, orientation between two domains is quite different to barley BBI, this makes the distance between two P1 residues (17Lys and 83Lys) in RBTI is only 23 Å apart rather than distance of 40 Å in barley BBI. The closer distance provides evidence to support result from activity assay that two domains show different abilities to inhibit trypsin. RBTI C-domain with protruding 84Met at P1’ position, moreover, mainly leads into breakdown of the classically canonical conformation of reactive site loop. Major interaction with BPT is achieved by RBTI N-domain but C-domain plays an auxiliary role to block trypsin molecule.
Baker EA., Bergin FG. & Leaper DJ. 2000. Matrix metalloproteinases, their tissue inhibitors and colorectal cancer staging. Br. J. Surg., 87:1215-1221.
Barbosa JARG., Teles RCL., Forrer VP., Guinaraes BG., Medrano FJ., Ventura MM. & de Freitas SM. 2003. Crystallization, data collection and phasing of black-eyed pea trypsin/chymotrypsin inhibitor in complex with bovine 刍-trypsin. Acta. Cryst. D, 59:1828-1830.
Bawadi HA., Antunes TM., Shih F. & Losso JN. 2004. In vitro inhibition of the activation of pro-matrix metalloproteinase 1 (Pro-MMP-1) and pro-matrix metalloproteinase 9 (Pro-MMP-9) by rice and soybean Bowman-Birk inhibitors. J. Agric. Food Chem., 52:4730-4736.
Birk Y., Gertler A, Khalef S. 1963. A pure trypsin inhibitor from soy bean. Biochem. J., 87:281-284.
Bowman DE. 1946. Differentiation of soy bean antitryptic factor. Proc. Soc. Exp. Biol. Med., 63:547-550.
Brauer ABE. & Leatherbarrow RJ. 2003. The conserved P1’ Ser of Bowman-Birk-type proteinase inhibitors is not essential for the integrity of the reactive site loop. Biochemical and Biophysical Research Communications, 308:300-305.
Brünger AT. 1992. X-PLOR Manual, Version 3.1: A system for crystallography and NMR, Yale University Press, New Haven.
Brünger AT., Adams PD., Clore GM., Delano WL., Gros P., Crosse-Kunstleve RW., Jiang JS., Kuszewski J., Nilges N., Pannu NS., Read RJ., Rice LM., Simonson T. & Warren GL. 1998. Crystallography and NMR system (CNS): A new software system for macromolecular structure determination. Acta. Cryst. D, 54:905-921.
Catalano M., Ragona L., Molinari H., Tava A. & Zetta L. 2003. Anticarcinogenic Bowman-Birk inhibitor isolated from snail medic seeds (Medicago scutellata): Solution structure and analysis of self-association behavior. Biochem., 42:2836-2846.
CCP4. Collaborative Computational Project, Number4. 1994. The CCP4 Suite: Programs for protein crystallography. Acta. Cryst. D, 50:760-763.
Chen P., Rose J., Love R., Wei CH. & Wang BC. 1992. Reactive sites of an anticarcinogenic Bowman-Birk proteinase inhibitor are similar to other trypsin inhibitors. J. Biol. Chem., 267:1990-1994.
Debreczeni J., Bunkoczi G., Girmann B. & Sheldrick G. 2003. In-house phase determination of the lima bean trypsin inhibitor: a low-resolution sulfur-sad case. Acta. Crystallogr. Sect. D, 59:393-395.
Hrabec E., Strek M., Nowak D. & Hrabec Z. 2001. Elevated level of circulating matrix metalloproteinase-9 in patients with lung cancer. Resp. Med., 95:1-4.
Koepke J., Ermler U., Warkentin E., Wenzl G. & Flecker P. 2000. Crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3 Å resolution. Structure basis of janus-faced serine protease inhibitor specificity. J. Mol. Biol., 298:477-491.
Laskowski RA., MacArthur MW., Moss DS. & Thornton JM. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 26:283-291.
Li de la Sierra I., Quillien L., Flecker P., Gueguen J. & Brunie S. 1999. Dimeric crystal structure of a Bowman-Birk protease inhibitor from pea seeds. J. Mol. Biol., 285:1195-1207.
Lin G., Bode W., Huber R., Chi C. & Engh RA. 1993. The 0.25-nm X-ray structure of the Bowman-Birk-type inhibitor from mung bean in ternary complex with porcine trypsin. Eur. J. Biochem., 212:549-55.
Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol., 33:491-497.
Maki Z., Tashiro M., Sugihara N & Kanamori M. 1980. Double-headed nature of a trypsin inhibitor from rice bran. Agric. Biol. Chem., 44:953-955.
McBride JD., Brauer ABE., Nievo M. & Leatherbarrow RJ. 1998. The role of threonine in the P2 position of Bowman-Birk proteinase inhibitors: studies on P2 variation in cyclic peptides encompassing the reactive site loop. J. Mol. Biol., 282:447-457.
Mello MO., Tanaka AS. & Silva-Filho MC. 2003. Molecular evolution of Bowman-Birk type proteinase inhibitors in flowering plants. Molecular Phylogenetics and Evolution, 27:103-112.
Otwinowski Z. & Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology, 276:307-326.
Park EY., Kim JA., Kim HW., Kim YS. & Song HK. 2004. Crystal structure of the Bowman-Birk inhibitor from barley seeds in ternary complex with porcine trypsin. J. Mol. Boil., 343:173-186.
Prakash B., Selvaraj S., Murthy MRN., Sreerama YN., Rao DR. & Gowda LR. 1996. Analysis of the amino acid sequences of plant Bowman-Birk inhibitors. J. Mol. Evol., 42:560-569.
Ragg EM., Galbusera V., Scarafoni A., Negri A., Tedeschi G., consonni A., Sessa F. & Duranti M. 2006. Inhibitory properties and solution structure of a potent Bowman-Birk protease inhibitor from lentil (Lens culinaris, L) seeds. FEBS, 273: 4024-4039.
Rakwal R., Agrawal GK. & Jwa NS. 2001. Characterization of a rice Bowman-Birk proteinase inhibitor: tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors. Gene, 263:189-198.
Ramachandran GN., Ramakrishnan C. & Sasisekharan V. 1963. Stereochemistry of polypeptide chain conformations. J. Mol. Biol., 7:95-99.
Rossmann MG. & Tong L. 1972. Rotation function calculations with GLRF program. Meth. Enzymol., 276:594-611.
Ryan CA. 1990. Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol., 28:425-449.
Schechter I. & Berger A. 1967. On the size of the active site in proteases. Biochem. Biophys. Chem., 247:3533-3538.
Song HK., Kim Ys., Yang JK., Moon J., Lee JY. & Suh SW. 1999. Crystal structure of a 16kDa double-headed Bowman-Birk trypsin inhibitor from barley seeds at 1.9 Å resolution. J. Mol. Bio., 293:1133-1144.
Tan L., Stevens FC. 1971. Amino acid sequence of lima bean protease inhibitor component- IV: Isolation and sequence determination of tryptic peptides. Eur. J. Biochem., 18:515-523.
Tashiro M. & Maki Z. 1979. Purification and characterization of a trypsin inhibitor from rice bran. J. Nutr. Sci. Vitaminol., 25:255-264.
Tashiro M., Hashino K., Shiozaki M., Ibuki F. & Maki Z. 1987. The complete amino acid sequence of rice bran trypsin inhibitor. J. Bioche., 102:297-306.
Tsunigae Y., Tanaka I., Yamane T., Kikkawa J. & Takahashi K. 1986. Structure of the trypsin-binding domain of Bowman-Birk type protease inhibitor and its interaction with trypsin. J. Biochem.(Tokyo), 100:1637-1646.
Vagin A. & Teplyakov A. 1997. MOLREP: an automated program for molecular replacement. J. Appl. Crystal., 30:1022-1025.
Voss RH., Ermler U., Essen LO., Wenzl G., Kim YM & Flecker P. 1996. Crystal structure of the bifunctional soybean Bowman-Birk inhibitor at 0.28-nm resolution. Structural peculiarities in a folded protein conformation. Eur. J. biochem., 242:122-131.
Werner MH. & Wemmer DE. 1992. Three-dimensional structure of soybean trypsin/chymotrypsin Bowman-Birk inhibitor in solution. Biochemistry, 31:999-1010.
Yakoby N. & Raskin I. 2004. A simple method to determine trypsin and chymotrypsin inhibitory activity. J. Biochem. Biophys. Methods, 59:241-251.