簡易檢索 / 詳目顯示

研究生: 蘭宜安
Lan, I-An
論文名稱: 旋轉平行四邊形急彎雙肋化通道熱傳性能實驗研究
An experimental study of thermal performance of radially rotating two-pass parallelogram ribbed channel
指導教授: 劉通敏
Liou, Tong-Miin
張始偉
Chang, Shyy-Woei
黃智永
Huang, Chih-Yung
口試委員: 許文震
Sheu, Wen-Jenn
黃柏文
Hwang, Po-Wen
吳興茂
Wu, Shing-Maw
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 296
中文關鍵詞: 渦輪機葉片內冷卻旋轉平行四邊形雙通道貼壁式橫肋離壁式橫肋
外文關鍵詞: rotor blade cooling, rotating parallelogram channel, attached transverse ribs, detached transverse ribs
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用紅外線熱像儀量測等邊長平行四邊形截面配置180°急彎雙通道之肋化表面,於靜態與旋轉狀態之詳細紐賽數(Nusselt number, Nu)分佈與通道平均范寧摩擦因子(Fanning friction factor, f)。研究探討設置90°貼壁式與離壁式橫肋之平行四邊形內冷卻雙通道於靜態以及旋轉條件下,雷諾數(Reynolds number,Re)、旋轉數(Rotation number,Ro)、浮力數(Buoyancy number, Bu)對端壁面局部以及區域平均Nu與通道平均f產生之單獨與耦合影響。研究所使用之雙通道截面為等邊長傾斜角45°之平行四邊形,通道進出口管道壁面相對配置貼壁式與離壁式橫肋,實驗參數範圍Re=5000~20000、Ro=0~0.3、Bu=0~0.142。依據靜態與旋轉通道中量測之局部Nu分佈、各部位之平均Nu與通道平均f所進行之參數分析結果,推導出Nu與f之實驗公式,藉以評估Re、Ro及Bu對Nu與f所產生之單獨與耦合影響,本研究主要貢獻為量測出Bu效應對旋轉通道f之影響與不同旋轉方向對旋轉通道端壁面熱傳分佈與通道平均壓損之影響。藉由量測之Nu與f計算出熱性能係數(Thermal performance factor, TPF)與文獻相較,可顯示出本測試管道較一般矩形或方形內設貼壁式橫肋管道之Nu數高且與內設45°貼壁式橫肋方形管道之熱傳性能接近,離壁式橫肋造成較貼壁式橫肋高之Nu與f,使整體TPF值與內設貼壁式橫肋管道之TPF值落於近似區間。


    This work employed the infrared thermography method to measure the detailed Nusselt number (Nu) distributions on the leading and the trailing endwalls, as well as detected the Fanning friction factors (f), of a two-pass parallelogram ribbed channel at static and rotating conditions. This research investigated the isolated and interdependent effects of Reynolds number (Re), rotation number (Ro) and buoyancy number (Bu) influences on local and regionally averaged Nu and channel averaged f for the present static and rotating two-pass parallelogram channel with detached and attached transverse ribs. The present two-pass parallelogram test channel was equilateral with the inclination angle of 45 degrees. The two opposite endwalls were fitted with the attached or detached transverse ribs. The parametric conditions tested specified in terms of Re, Ro and Bu in the respectively ranges of 5000<Re<20,000, 0<Ro<0.3, and 0<Bu<0.142. In according to the local and averaged Nusselt numbers and the Fanning friction factors measured at the static and rotating conditions, a set of empirical Nu and f correlations was generated to evaluate the independent and interdependent impacts of Re, Ro and Bu on the Nu and f performances. The main contributions of the present work are (I) the measurements of f of rotating channel subjected to Bu effect. (II) the influences of rotating direction on the endwall heat transfer distributions and the channel averaged f. The thermal performance factors (TPF) evaluated from the measured Nu and f data were compared with the relevant results found in the literature. Such comparative study disclosed that the present parallelogram channel with the attached transverse ribs exhibited the higher Nusselt numbers than the rectangular and square channels with the attached transverse ribs and provided the Nusselt numbers similar to the square channel with the 45 degrees attached ribs. With the present detached transverse ribs, both Nu and f levels were higher than the attached-rib counterparts, leading to the similar TPF values for the present two parallelogram two-pass channels with the attached and detached transverse ribs.

    第一章 前言 1 1-1 工業應用背景 1 1-2 文獻回顧 3 1-2-1葉片前緣 (Leading region) 區域 3 1-2-2葉片中段 (Mid-chord region) 區域 16 1-2-3葉片尾段 (Trailing region) 區域 28 1-2-4葉尖 (Tip region) 區域 35 1-2-5文獻回顧總結 39 1-3 研究主旨 42 第二章 實驗設備 72 2-1實驗模組幾何組成 72 2-2旋轉熱傳實驗設備 78 2-3通道壁面名稱定義 81 第三章 研究方法 83 3-1 實驗參數 83 3-1-1無因次參數群 83 3-1-2實驗參數範圍 87 3-2 實驗流程 91 3-2-1紅外線熱像儀校正 91 3-2-2熱損失實驗 93 3-2-3靜態熱傳實驗 95 3-2-4旋轉熱傳實驗 95 3-2-5壓損實驗 96 3-3 數據處理 97 3-3-1計算熱傳係數 97 3-3-2計算焓平衡 99 3-3-2計算f值與TPF值 99 3-4 實驗不確定度 102 第四章 實驗結果與討論 105 4-1 壁面配置貼壁式肋條之等邊長平行四邊形截面具180°急彎雙通道之熱傳與壓損特性 105 4-1-1通道入口流場特性 105 4-1-2靜態通道熱傳分析 103 4-1-3旋轉通道熱傳分析 125 4-1-4靜態與旋轉通道壓損性能 165 4-1-5靜態與旋轉通道熱性能係數 171 4-2壁面配置離壁式肋條之等邊長平行四邊形截面具180°急彎雙通道之熱傳與壓損特性 185 4-2-1通道入口流場特性 185 4-2-2靜態通道熱傳分析 186 4-2-3旋轉通道熱傳分析 204 4-2-4靜態與旋轉通道壓損性能 247 4-2-5靜態與旋轉通道熱性能係數 251 第五章 結論 260 5-1 靜態通道 260 5-2 旋轉通道 261 5-3 內設貼壁式橫肋與離壁式橫肋通道熱傳與壓損性能比較 263 5-4 本研究主要貢獻 264 後續研究建議 267 參考文獻 268 附錄 Thermal performance of radially rotating cooling devices with phase change 278

    [1] F. Haselbach and R. Parker, “Hot End Technology for Advanced, Low Emission Large Civil Aircraft Engines”, September 23-28, 2012, 28th International Congress of The Aeronautical Sciences, ICAS 2012-4.10.2, Brisbane, Australia.
    [2] L. Wang, M. Bahador, S. Bruneflod, M. Annerfeldt, M. Björkman and I. Hultmark, “Siemens SGT-800 Industrial Gas Turbine Enhanced to 50 Mw: Turbine Design Modifications, Validation and Operation Experience”, June 3-7, 2013, Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-95462, San Antonio, Texas, USA.
    [3] E. Benini, “Advances in Gas Turbine Technology”, 2011, InTech, Croatia.
    [4] J. C. Han, “Advanced Cooling in Gas Turbines”, 2018, Journal of Heat Transfer, Accepted, Doi: 10.1115/1.4039644.
    [5] P. Ligrani, “Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines”, 2013, International Journal of Rotating Machinery, Article ID 275653, Doi: 10.1155/2013/275653.
    [6] P. Pudake, A. M. Elgandelwar and Mandar M.Lele, “Gas Turbine Blade Cooling Technology–A Case Study”, 2012, International Journal of Current Engineering and Technology, Special Issue-7, E-ISSN 2277-4106.
    [7] J. Town, D. Straub, J. Black, K. A. Thole and T. I-P. Shih, “State-of-the-Art Cooling Technology for a Turbine Rotor Blade”, 2018, International Journal of Research In Aeronautical and Mechanical Engineering, Vol. 140, pp. 071007(1-12), Doi: 10.1115/1.4039942.
    [8] J. Zhou, X. Wang, J. Li and Y. Li, “Effects of Film Cooling Hole Locations on Flow and Heat Transfer Characteristics of Impingement/Effusion Cooling at Turbine Blade Leading Edge”, 2018, International Journal of Heat and Mass Transfer, Vol. 126, pp. 192-205, Doi: 10.1016/j.ijheatmasstransfer.2018.06.020.
    [9] S. K. Hong, D. H. Lee and H. H. Cho, “Heat/mass Transfer in Rotating Impingement/Effusion Cooling With Rib Turbulators”, 2009, International Journal of Heat and Mass Transfer, Vol. 52, pp. 3109-3117, Doi: 10.1016/j.ijheatmasstransfer.2009.01.031.
    [10] Q. Y. Zhao, H. Chung, E. Y. Jung and H. H. Cho, “Effect of Various Rib Arrangements on Heat Transfer in a Semicylinder Channel With Effusion Flow”, 2017, Numerical Heat Transfer, Part A, Vol. 71, No. 5, pp. 547-559, Doi: 10.1080/10407782.2016.1277939.
    [11] R. S. Amano and B. Sundén, “Thermal Engineering in Power Syatems”, 2008, Chapter 7, WIT Press, UK, Doi: 10.2495/978-1-84564-062-0/07.
    [12] P. Calzada and J. J. Alvarez, “Experimental Investigation on the Heat Transfer of a Leading Edge Impingement Cooling System for Low Pressure Turbine Vanes”, 2010, Journal of Heat Transfer, Vol. 132, pp. 122202(1-8), Doi: 10.1115/1.4002206.
    [13] N. Domaschke, J. Wolfersdorf and K. Semmler, “Heat Transfer and Pressure Drop Measurements in a Rib Roughened Leading Edge Cooling Channel”, 2012, Journal of Turbomachinery, Vol. 134, pp. 061006(1-9), Doi: 10.1115/1.4004747.
    [14] L. Andrei, C. Carcasci, R. D. Soghe, B. Facchini, F. Maiuolo, L. Tarchi and S. Zecchi, “Heat Transfer Measurements in a Leading Edge Geometry With Racetrack Holes and Film Cooling Extraction”, 2013, Journal of Turbomachinery, Vol. 135, pp. 031020(1-9), Doi: 10.1115/1.4007527.
    [15] M. E. Taslim and D. Bethka, “Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Cross-Flow”, 2009, Journal of Turbomachinery, Vol. 131, pp. 011021(1-7), Doi: 10.1115/1.2950058.
    [16] J. Harrington, J. Hossain, W. Wang, J. Kapat, M. Maurer and S. Thorpe, “Effect of Target Wall Curvature on Heat Transfer and Pressure Loss From Jet Array Impingement”, 2017, Journal of Turbomachinery, Vol. 139, pp. 051004(1-13), Doi: 10.1115/1.4035160.
    [17] E. Y. Jung, C. U. Park, D. H. Lee, K. M. Kim and H. H. Cho, “Effect of the Injection Angle on Local Heat Transfer in a Showerhead Cooling With Array Impingement Jets”, 2018, International Journal of Thermal Sciences, Vol. 124, pp. 344-355, Doi: 10.1016/j.ijthermalsci.2017.10.033.
    [18] K. Wang, H. Li and J. Zhu, “Experimental Study of Heat Transfer Characteristic on Jet Impingement Cooling With Film Extraction Flow”, 2014, Applied Thermal Engineering, Vol. 70, pp. 620-629, Doi: 10.1016/j.applthermaleng. 2014.05.077.
    [19] S. K. Hong, D. H. Lee, H. H. Cho and D. H. Rhee, “Local Heat/Mass Transfer Measurements on Effusion Plates in Impingement/Effusion Cooling With Rotation”, 2010, International Journal of Heat and Mass Transfer, Vol. 53, pp. 1373-1379, Doi: 10.1016/j.ijheatmasstransfer.2009.12.022.
    [20] H. Deng, Z. Gu, J. Zhu and Z. Tao, “Experiments on Impingement Heat Transfer With Film Extraction Flow on the Leading Edge of Rotating Blades”, 2012, International Journal of Heat and Mass Transfer, Vol. 55, pp. 5425-5435, Doi: 10.1016/j.ijheatmasstransfer.2012.04.051.
    [21] Y. H. Liu, M. Huh, D. H. Rhee, J. C. Han and H. K. Moon, “Heat Transfer in Leading Edge, Triangular Shaped Cooling Channels With Angled Ribs Under High Rotation Numbers”, 2009, Journal of Turbomachinery, Vol. 131, pp. 041017(1-12), Doi: 10.1115/1.3072493.
    [22] S. C. Huang and Y. H. Liu, “High Rotation Number Effect on Heat Transfer in a Leading Edge Cooling Channel of Gas Turbine Blades With Three Channel Orientations”, 2013, Journal of Thermal Science and Engineering Applications, Vol. 5, pp. 041003(1-11), Doi: 10.1115/1.4023888.
    [23] T. J. Craft, H. Iacovides and N. A. Mostafa, “Modelling of Three-Dimensional Jet Array Impingement and Heat Transfer on a Concave Surface”, 2008, International Journal of Heat and Fluid Flow, Vol. 29, pp. 687-702, Doi: 10.1016/j.ijheatfluidflow.2008.03.005.
    [24] M. A. R. Sharif and K. K. Mothe, “Parametric Study of Turbulent Slot-Jet Impingement Heat Transfer From Concave Cylindrical Surfaces”, 2010, International Journal of Thermal Sciences, Vol. 49, pp. 428-442, Doi: 10.1016/j.ijthermalsci.2009.07.017.
    [25] Z. Liu and Z. Feng, “Numerical Simulation on The Effect of Jet Nozzle Position on Impingement Cooling of Gas Turbine Blade Leading Edge”, 2011, International Journal of Heat and Mass Transfer, Vol. 54, pp. 4949-4959, Doi: 10.1016/j.ijheatmasstransfer.2011.07.008.
    [26] G. Lin, K. Kusterer, A. H. Ayed, D. Bohn, T. Sugimoto, R. Tanaka and M. Kazari, “Numerical Investigation on Heat Transfer in an Advanced New Leading Edge Impingement Cooling Configuration”, 2015, Propulsion and Power Research, Vol. 4, No. 4, pp. 179-189, Doi: 10.1016/j.jppr.2015.10.003.
    [27] Q. Jing, D. Zhang and Y. Xie, “Numerical Investigations of Impingement Cooling Performance on Flat and Non-Flat Targets With Dimple/Protrusion and Triangular Rib”, 2018, International Journal of Heat and Mass Transfer, Vol. 126, pp. 169-190, Doi: 10.1016/j.ijheatmasstransfer.2018.05.009.
    [28] Z. Liu, L. Ye, C. Wang and Z. Feng, “Numerical Simulation on Impingement and Film Composite Cooling of Blade Leading Edge Model for Gas Turbine”, 2014, Applied Thermal Engineering, Vol. 73, pp. 1432-1443, Doi: 10.1016/j.applthermaleng.2014.05.060.
    [29] N. Al-Zurfi and A. Turan, “LES of Rotational Effects On Film Cooling Effectiveness and Heat Transfer Coefficient in a Gas Turbine Blade With One Row of Air Film Injection”, 2016, International Journal of Thermal Sciences, Vol. 99, pp. 96-112, Doi: 10.1016/j.ijthermalsci.2015.08.005.
    [30] T. Elnady, I. Hassan, L. Kadem and T. Lucas, “Cooling Effectiveness of Shaped Film Holes for Leading Edge”, 2013, Experimental Thermal and Fluid Science, Vol. 44, pp. 649-661, Doi: 10.1016/j.expthermflusci.2012.09.005.
    [31] W. J. Gao, Z. F. Yue, L. Li, Z. N. Zhao and F. J. Tong, “Numerical Simulation on Film Cooling With Compound Angle of Blade Leading Edge Model for Gas Turbine”, 2017, International Journal of Heat and Mass Transfer, Vol. 115, pp. 839-855, Doi: 10.1016/j.ijheatmasstransfer.2017.07.105.
    [32] N. H. K. Chowdhury, S. A. Qureshi, M. Zhang and J. C. Han, “Influence of Turbine Blade Leading Edge Shape on Film Cooling With Cylindrical Holes”, 2017, International Journal of Heat and Mass Transfer, Vol. 115, pp. 895-908, Doi: 10.1016/j.ijheatmasstransfer.2017.08.020.
    [33] randye, 2015, Available at: http://images.fieroforum.com/2015/cvd1gif_00000038881.gif.
    [34] S. H. Kim, K. H. Ahn, J. S. Park, E. Y. Jung, K. Y. Hwang and H. H. Cho, “Local Heat and Mass Transfer Measurements for Multi-Layered Impingement/Effusion Cooling: Effects of Pin Spacing on the Impingement And Effusion Plate”, 2017, International Journal of Heat and Mass Transfer, Vol. 105, pp. 712-722, Doi: 10.1016/j.ijheatmasstransfer.2016.10.007.
    [35] X. Liu, Z. Tao, S. Ding and G. Xu, “Experimental Investigation of Heat Transfer Characteristics in a Variable Cross-Sectioned Two-Pass Channel With Combined Film Cooling Holes and Inclined Ribs”, 2013, Applied Thermal Engineering, Vol. 50, pp. 1186-1193, Doi: 10.1016/j.applthermaleng.2012.08.001.
    [36] P. Singh, W. Li, S. V. Ekkad and J. Ren, “Experimental and Numerical Investigation of Heat Transfer Inside Two-Pass Rib Roughened Duct (AR = 1:2) Under Rotating and Stationary Conditions”, 2017, International Journal of Heat and Mass Transfer, Vol. 113, pp. 384-398, Doi: 10.1016/j.ijheatmasstransfer. 2017.05.085.
    [37] I. V. Shevchuk, S. C. Jenkins, B. Weigand, J. Wolfersdorf, S. O. Neumann and M. Schnieder, “Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel”, 2011, Journal of Heat Transfer, Vol. 133, pp. 051701(1-8), Doi: 10.1115/1.4003080.
    [38] L. Zheng, Y. Xie, D. Zhang and H. Shi, “Flow and Heat Transfer Characteristics in Channels With Groove–Protrusions and Combination Effect With Ribs”, 2016, Journal of Heat Transfer, Vol. 138, pp. 014501(1-8), Doi: 10.1115/1.4031077.
    [39] H. Li, R. You, H. Deng, Z. Tao and J. Zhu, “Heat Transfer Investigation in a Rotating U-Turn Smooth Channel With Irregular Cross-Section”, 2016, International Journal of Heat and Mass Transfer, Vol. 96, pp. 267-277, Doi: 10.1016/j.ijheatmasstransfer.2015.12.071.
    [40] M. Schüler, H. M. Dreher, S. O. Neumann, B. Weigand and M. Elfert, “Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-Similar Two-Pass Internal Cooling Channel With Smooth and Ribbed Walls”, 2012, Journal of Turbomachinery, Vol. 134, pp. 021021(1-10), Doi: 10.1115/1.4003086.
    [41] C. Egger, J. Wolfersdorf and M. Schnieder, “Combined Experimental/Numerical Method Using Infrared Thermography and Finite Element Analysis for Estimation of Local Heat Transfer Distribution in an Internal Cooling System”, 2014, Journal of Turbomachinery, Vol. 136, pp. 061005(1-9), Doi: 10.1115/ 1.4025731.
    [42] S. W. Chang, T. M. Liou and Y. Po, “Coriolis and Rotating Buoyancy Effect on Detailed Heat Transfer Distributions in a Two-Pass Square Channel Roughened By 45° Ribs at High Rotation Numbers”, 2010, International Journal of Heat and Mass Transfer, Vol. 53, pp. 1349-1363, Doi: 10.1016/j.ijheatmasstransfer. 2009.12.024.
    [43] G. Xie, J. Liu, P. M. Ligrani and B. Sunden, “Flow Structure and Heat Transfer in a Square Passage With Offset Mid-Truncated Ribs”, 2014, International Journal of Heat and Mass Transfer, Vol. 71, pp. 44-56, Doi: 10.1016/ j.ijheatmasstransfer.2013.12.005.
    [44] L. Wang, S. Wang, F. Wen, X. Zhou and Z. Wang, “Heat Transfer and Flow Characteristics of U-Shaped Cooling Channels With Novel Wavy Ribs Under Stationary and Rotating Conditions”, 2018, International Journal of Heat and Mass Transfer, Vol. 126, pp. 312-333, Doi: 10.1016/j.ijheatmasstransfer.2018.05. 123.
    [45] H. Liu and J. Wang, “Numerical Investigation on Synthetical Performances of Fluid Flow and Heat Transfer of Semiattached Rib-Channels”, 2011, International Journal of Heat and Mass Transfer, Vol. 54, pp. 575-583, Doi: 10.1016/j.ijheatmasstransfer.2010.09.013.
    [46] E. Y. Choi, Y. D. Choi, W. S. Lee, J. T. Chung and J. S. Kwak, “Heat Transfer Augmentation Using a Ribedimple Compound Cooling Technique”, 2013, Applied Thermal Engineering, Vol. 51, pp. 435-441, Doi: 10.1016/j.appltherma leng.2012.09.041.
    [47] M. A. Elyyan and D. Tafti, “Investigation of Coriolis Forces Effect of Flow Structure and Heat Transfer Distribution in a Rotating Dimpled Channel”, 2012, Journal of Turbomachinery, Vol. 134, pp. 031007(1-8), Doi: 10.1115/1.4003027.
    [48] Z. Shen, Y. Xie and D. Zhang, “Numerical Predictions on Fluid Flow and Heat Transfer in U-Shaped Channel With the Combination of Ribs, Dimples and Protrusions Under Rotational Effects”, 2015, International Journal of Heat and Mass Transfer, Vol. 80, pp. 494-512, Doi: 10.1016/j.ijheatmasstransfer.2014.09. 057.
    [49] M. Schüler, F. Zehnder, B. Weigand, J. Wolfersdorf and S. O. Neumann, “The Effect of Side Wall Mass Extraction on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel”, 2011, Journal of Turbomachinery, Vol. 133, pp. 021002(1-11), Doi: 10.1115/1.4000552.
    [50] I. T. Oh, K. M. Kim, D. H. Lee, J. S. Park and H. H. Cho, “Local Heat/Mass Transfer and Friction Loss Measurement in a Rotating Matrix Cooling Channel”, 2012, Journal of Heat Transfer, Vol. 134, pp. 011901(1-9), Doi: 10.1115/ 1.4004853.
    [51] H. Sun, T. Sun, L. Yang, S. Bu and Y. Luan, “Effect of Bleed Hole on Internal Flow and Heat Transfer in Matrix Cooling Channel”, 2018, Applied Thermal Engineering, Vol. 136, pp. 419-430, Doi: 10.1016/j.applthermaleng.2018.03.031.
    [52] M. Huh, J. Lei, Y. H. Liu and J. C. Han, “High Rotation Number Effects on Heat Transfer in a Rectangular (AR=2:1) Two-Pass Channel”, 2011, Journal of Turbomachinery, Vol. 133, pp. 021001(1-11), Doi: 10.1115/1.4000549.
    [53] Y. Li, G. Xu, H. Deng and S. Tian, “Buoyancy Effect on Heat Transfer in Rotating Smooth Square U-Duct at High Rotation Number”, 2014, Propulsion and Power Research, Vol. 3, No. 3, pp. 107-120, Doi: 10.1016/j.jppr.2014.07. 001.
    [54] I. Mayo, T. Arts, A. El-Habib and B. Parres, “Two-Dimensional Heat Transfer Distribution of a Rotating Ribbed Channel at Different Reynolds Numbers”, 2015, Journal of Turbomachinery, Vol. 137, pp. 031002(1-11), Doi: 10.1115/ 1.4028458.
    [55] H. Deng, Y. Li, Z. Tao, G. Xu and S. Tian, “Pressure Drop and Heat Transfer Performance in a Rotating Two-Pass Channel With Staggered 45-deg Ribs”, 2017, International Journal of Heat and Mass Transfer, Vol. 108, pp. 2273-2282, Doi: 10.1016/j.ijheatmasstransfer.2017.01.048.
    [56] G. Xu, Y. Li, H. Deng, H. Li and X. Yu, “The Application of Similarity Theory for Heat Transfer Investigation in Rotational Internal Cooling Channel”, 2015, International Journal of Heat and Mass Transfer, Vol. 85, pp. 98-109, Doi: 10.1016/j.ijheatmasstransfer.2015.01.108.
    [57] A. Terzis, C. Skourides, P. Ott, J. Wolfersdorf and B. Weigand, “Aerothermal Investigation of a Single Row Divergent Narrow Impingement Channel by Particle Image Velocimetry and Liquid Crystal Thermography”, 2016, Journal of Turbomachinery, Vol. 138, pp. 051003(1-9), Doi: 10.1115/1.4032328.
    [58] Y. Rao, “Jet Impingement Heat Transfer in Narrow Channels With Different Pin Fin Configurations on Target Surfaces”, 2018, Journal of Heat Transfer, Vol. 140, pp. 072201(1-10), Doi: 10.1115/1.4039015.
    [59] A. V. Murray, P. T. Ireland and E. Romero, “Development of a Steady-State Experimental Facility for the Analysis of Double-Wall Effusion Cooling Geometries”, June 11-15, 2018, Oslo, Norway, Proceedings of ASME Turbo Expo 2018, GT2018-75924.
    [60] NIKON METROLOGY NV, 2015, Available at: https://www.nikonmetrology.com/images/products/x-ray-and-ct-inspection/computed-tomography/XTH-450-high-voltage-ct/nikon-metrology-xray-ct-computed-tomography-XTH450-turbine-blades.jpg.
    [61] L. M. Wright, Y. H. Liu, J. C. Han and S. Chopra, “Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers”, 2008, Journal of Heat Transfer, Vol. 130, pp. 071701(1-11), Doi: 10.1115/1.2907437.
    [62] A. P. Rallabandi, Y. H. Liu and J. C. Han, “Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers”, 2011, Journal of Thermal Science and Engineering Applications, Vol. 3, pp. 021007(1-9), Doi: 10.1115/1.4003746.
    [63] Y. H. Liu, M. Huh and J. C. Han, “High Rotation Number Effect on Heat Transfer in a Trailing Edge Channel With Tapered Ribs”, 2012, International Journal of Heat and Fluid Flow, Vol. 33, pp. 182-192, Doi: 10.1016/j.ijheatfluidflow. 2011.10.002.
    [64] S. F. Yang, H. W. Wu, J. C. Han, L. Zhang and H. K. Moon, “Heat Transfer in a Smooth Rotating Multi-Passage Channel With Hub Turning Vane and Trailing-Edge Slot Ejection”, 2017, International Journal of Heat and Mass Transfer, Vol. 109, pp. 1-15, Doi: 10.1016/j.ijheatmasstransfer.2017.01.059.
    [65] H. Deng, L. Li, J. Zhu, Z. Tao, S. Tian and Z. Yang, “Heat Transfer of a Rotating Two-Inlet Trailing Edge Channel With Lateral Fluid Extractions”, 2018, International Journal of Thermal Sciences, Vol. 125, pp. 313-323, Doi: 10.1016/j.ijthermalsci.2017.11.034.
    [66] M. E. Taslim and M. K. H. Fong, “Experimental and Numerical Crossover Jet Impingement in a Rib-Roughened Airfoil Trailing-Edge Cooling Channel”, 2013, Journal of Turbomachinery, Vol. 135, pp. 051014(1-10), Doi: 10.1115/1.4023459.
    [67] W. Siddique, L. El-Gabry, I. V. Shevchuk and T. H. Fransson, “Validation and Analysis of Numerical Results for a Two-Pass Trapezoidal Channel With Different Cooling Configurations of Trailing Edge”, 2013, Journal of Turbomachinery, Vol. 135, pp. 011027(1-8), Doi: 10.1115/1.4006534.
    [68] Y. Rao, C. Wan and Y. Xu, “An Experimental Study of Pressure Loss and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths”, 2012, International Journal of Heat and Mass Transfer, Vol. 55, pp. 6723-6733, Doi: 10.1016/j.ijheatmasstransfer.2012.06.081.
    [69] J. S. Park, K. M. Kim, D. H. Lee, H. H. Cho and M. Chyu, “Heat Transfer in Rotating Channel With Inclined Pin-Fins”, 2011, Journal of Turbomachinery, Vol. 133, pp. 021003(1-8), Doi: 10.1115/1.4000553.
    [70] S. W. Chang, T. M. Liou and T. H. Lee, “Heat Transfer of a Rotating Rectangular Channel With a Diamond-Shaped Pin-Fin Array at High Rotation Numbers”, 2013, Journal of Turbomachinery, Vol. 135, pp. 041007(1-10), Doi: 10.1115/ 1.4007684.
    [71] W. Hong, Y. Liu and G. Xu, “Measurements of Heat Transfer and Pressure In a Trailing Edge Cavity of A Turbine Blade”, 2013, Chinese Journal of Aeronautics, Vol. 26, No. 2, pp. 294-308, Doi: 10.1016/j.cja.2013.02.006.
    [72] F. Pagnacco, L. Furlani, A. Armellini and L. Casarsa, “Rotating Heat Transfer Measurements on Realistic Multi-Pass Geometry”, 2016, Energy Procedia, Vol. 101, pp. 758-765, Doi: 10.1016/j.egypro.2016.11.096.
    [73] A. Ullal, S. C. Hung, S. C. Huang and Y. H. Liu, “Experimental Investigation of the Effect of Compound Protrusion-Pin Array On Heat Transfer in an Internal Rotating Cooling Channel”, 2018, Applied Thermal Engineering, Vol. 140, pp. 23-33, Doi: 10.1016/j.applthermaleng.2018.05.019.
    [74] W. Siddique, N. A. Khan and I. Haq, “Analysis of Numerical Results for Two-Pass Trapezoidal Channel With Different Cooling Configurations of Trailing Edge: The Effect of Dimples”, 2015, Applied Thermal Engineering, Vol. 89, pp. 763-771, Doi: 10.1016/j.applthermaleng.2015.06.067.
    [75] T. H. Wong, P. T. Ireland and K. P. Self, “Film Cooling Effectiveness Downstream of Trailing Edge Slots Including Cutback Surface Protuberances”, 2016, International Journal Turbomachinery Propulsion and Power, Vol. 1, No.4, pp. 1-15, Doi: 10.3390/ijtpp1010004.
    [76] G. Barigozzi, Claudio Mucignat, Hamed Abdeh, Davide Scandella and Giorgio Dolci, “Assessment of Binary PSP Technique for Film Cooling Effectiveness Measurement on Nozzle Vane Cascade With Cutback Trailing Edge”, 2018, Experimental Thermal and Fluid Science, Vol. 97, pp. 431-443, Doi: 10.1016/ j.expthermflusci.2018.05.015.
    [77] J. Joo and P. Durbin, “Simulation of Turbine Blade Trailing Edge Cooling”, 2009, Journal of Fluids Engineering, Vol. 131, pp. 021102(1-14), Doi: 10.1115/1.3054287.
    [78] H. Schneider, D. von Terzi and H. J. Bauer, “Large-Eddy Simulations of Trailing-Edge Cutback Film Cooling at Low Blowing Ratio”, 2010, International Journal of Heat and Fluid Flow, Vol. 31, pp. 767-775, Doi: 10.1016/j.ijheatfluidflow.2010.06.010.
    [79] Z. Yang and H. Hu, “Study of Trailing-Edge Cooling Using Pressure Sensitive Paint Technique”, 2011, Journal of Propulsion and Power, Vol. 27, No. 3, pp. 700-709, Doi: 10.2514/1.B34070.
    [80] A. Murata, K. Yano, M. Hanai, H. Saito and K. Iwamoto, “Arrangement Effects of Inclined Teardrop-Shaped Dimples on Film Cooling Performance of Dimpled Cutback Surface at Airfoil Trailing Edge”, 2017, International Journal of Heat and Mass Transfer, Vol. 107, pp. 761-770, Doi: 10.1016/j.ijheatmasstransfer. 2016.11.081.
    [81] J. Ling, R. Rossi and J. K. Eaton, “Near Wall Modeling for Trailing Edge Slot Film Cooling”, 2015, Journal of Fluids Engineering, Vol. 137, pp. 021103(1-10), Doi: 10.1115/1.4028498.
    [82] B. Sundén and G. Xie, “Gas Turbine Blade Tip Heat Transfer and Cooling: A Literature Survey”, 2010, Heat Transfer Engineering, Vol. 31, No. 7, pp. 527-554, Doi: 10.1080/01457630903425320.
    [83] D. O. O’Dowd, Q. Zhang, L. He, P. M. Ligrani and S. Friedrichs, “Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip”, 2011, Journal of Turbomachinery, Vol. 133, pp. 021028(1-10), Doi: 10.1115/ 1.4001236.
    [84] C. De Maesschalck, S. Lavagnoli, G. Paniagua and N. Vinha “Aerothermodynamics of Tight Rotor Tip Clearance Flows in High-Speed Unshrouded Turbines”, 2014, Applied Thermal Engineering, Vol. 65, pp. 343-351, Doi: 10.1016/j.applthermaleng.2014.01.015.
    [85] S. Lavagnoli, C. De Maesschalck and G. Paniagua, “Analysis of the Heat Transfer Driving Parameters in Tight Rotor Blade Tip Clearances”, 2016, Journal of Heat Transfer, Vol. 138, pp. 011705(1-10), Doi: 10.1115/1.4031131.
    [86] S. W. Lee, H. S. Moon and S. E. Lee, “Tip Gap Height Effects on Flow Structure and Heat/Mass Transfer Over Plane Tip of a High-Turning Turbine Rotor Blade”, 2009, International Journal of Heat and Fluid Flow, Vol. 30, pp. 198-210, Doi: 10.1016/j.ijheatfluidflow.2008.12.009.
    [87] C. Zhou, “Effects of Endwall Motion on Thermal Performance of Cavity Tips With Different Squealer Width and Height”, 2015, International Journal of Heat and Mass Transfer, Vol. 91, pp. 1248-1258, Doi: 10.1016/j.ijheatmasstransfer. 2015.07.101.
    [88] Y. C. Nho, Y. J. Lee and J. S. Kwak, “Effects of Tip Shape on the Gas Turbine Blade Tip Heat Transfer”, 2012, Journal of Thermophysics and Heat Transfer, Vol. 26, No. 2, pp. 305-312, Doi: 10.2514/1.T3675.
    [89] W. S. Lee, D. H. Kim, J. S. Park, J. S. Kwak and J. T. Chung, “Effect of Triangular Grooved Tip on Blade Tip Region Heat Transfer”, 2014, Journal of Thermophysics and Heat Transfe, Vol. 28, No. 2, pp. 226-235, Doi: 10.2514/1.T4254.
    [90] C. De Maesschalck, S. Lavagnoli and G. Paniagua, “Blade Tip Carving Effects on the Aerothermal Performance of a Transonic Turbine”, 2015, Journal of Turbomachinery, Vol. 137, pp. 021005(1-10), Doi: 10.1115/1.4028326.
    [91] X. Yan, Y. Huang, K. He, J. Li and Z. Feng, “Numerical Investigations Into the Effect of Squealer–Winglet Blade Tip Modifications on Aerodynamic and Heat Transfer Performance”, 2016, International Journal of Heat and Mass Transfer, Vol. 103, pp. 242-253, Doi: 10.1016/j.ijheatmasstransfer.2016.07.058.
    [92] J. S. Joo and S. W. Lee, “Heat/Mass Transfer Over the Cavity Squealer Tip Equipped With a Full Coverage Winglet in a Turbine Cascade: Part 1 – Data on the Winglet Top Surface”, 2017, International Journal of Heat and Mass Transfer, Vol. 108, pp. 1255-1263, Doi: 10.1016/j.ijheatmasstransfer.2016.12. 027.
    [93] S. W. Lee and J. S. Joo, “Heat/Mass Transfer Over the Cavity Squealer Tip Equipped With a Full Coverage Winglet in a Turbine Cascade: Part 2 – Data on the Cavity Floor”, 2017, International Journal of Heat and Mass Transfer, Vol. 108, pp. 1264-1272, Doi: 10.1016/j.ijheatmasstransfer.2016.12.026.
    [94] M. Niu and S. Zang, “Experimental and Numerical Investigations of Tip Injection on Tip Clearance Flow in an Axial Turbine Cascade”, 2011, Experimental Thermal and Fluid Science, Vol. 35, pp. 1214-1222, Doi: 10.1016/j.expthermflusci.2011.04.009.
    [95] S. Naik, C. Georgakis, T. Hofer and D. Lengani, “Heat Transfer and Film Cooling of Blade Tips and Endwalls”, 2012, Journal of Turbomachinery, Vol. 134, pp. 041004(1-11), Doi: 10.1115/1.4003652.
    [96] J. S. Park, D. H. Lee, D. H. Rhee, S. H. Kang and H. H. Cho, “Heat Transfer and Film Cooling Effectiveness on the Squealer Tip of a Turbine Blade”, 2014, Energy, Vol. 72, pp. 331-343, Doi: 10.1016/j.energy.2014.05.041.
    [97] J. Wang, B. Sundén, M. Zeng and Q. W. Wang, “Influence of Different Rim Widths and Blowing Ratios on Film Cooling Characteristics for a Blade Tip”, 2012, Journal of Heat Transfer, Vol. 134, pp. 061701(1-8), Doi: 10.1115/ 1.4006017.
    [98] J. Gao, Q. Zheng, Z. Zhang and Y. Jiang, “Aero-Thermal Performance Improvements of Unshrouded Turbines Through Management of Tip Leakage and Injection Flows”, 2014, Energy, Vol. 69, pp. 648-660, Doi: 10.1016/ j.energy.2014.03.060.
    [99] K. He, “Investigations of Film Cooling and Heat Transfer on a Turbine Blade Squealer Tip”, 2017, Applied Thermal Engineering, Vol. 110, pp. 630-647, Doi: 10.1016/j.applthermaleng.2016.08.173.
    [100] F. N. Cheng, J. Z. Zhang, H. P. Chang and J. Y. Zhang, “Investigations of Film-Cooling Effectiveness on the Squealer Tip With Various Film-Hole Configurations in a Linear Cascade”, 2018, International Journal of Heat and Mass Transfer, Vol. 117, pp. 344-357, Doi: 10.1016/j.ijheatmasstransfer.2017.09. 100.
    [101] X. Yan, Y. Huang and K. He, “Effect of Ejection Angle and Blowing Ratio on Heat Transfer and Film Cooling Effect on a Winglet Tip”, 2018, International Journal of Heat and Mass Transfer, Vol. 125, pp. 357-374, Doi: 10.1016/ j.ijheatmasstransfer.2018.04.097.
    [102] Y. Wang, Y. Song, J. Yu and F. Chen, “Effect of Cooling Injection on The Leakage Flow of a Turbine Cascade With Honeycomb Tip”, 2018, Applied Thermal Engineering, Vol. 133, pp. 690-703, Doi: 10.1016/j.applthermaleng. 2018.01.190.
    [103] Y. Wang, Y. Song, J. Yu and F. Chen, “Numerical Study of the Effect of the Cavity Depth on the Leakage Control in a Cooled Honeycomb-Tip Turbine Cascade”, 2018, Applied Thermal Engineering, Vol. 138, pp. 292-299, Doi: 10.1016/j.applthermaleng.2018.04.088.
    [104] A. Lin, “Flow Field and Heat Transfer Performance in Stationary Two-Pass Smooth Parallelogram Channels with Fully Developed Inlet Flow”, 2016, Master thesis, National Tsing Hua University, Taiwan.
    [105] T. M. Liou, M. Y. Chen and Y. M. Wang, “Heat Transfer, Fluid Flow, and Pressure Measurements Inside a Rotating Two-Pass Duct With Detached 90-Deg Ribs”, 2003, Journal of Turbomachinery, Vol. 125, pp. 565-574, Doi: 10.1115/ 1.1565086.
    [106] S. W. Chang and W. D. Morris, “Heat Transfer in a Radially Rotating Square Duct Fitted With In-Line Transverse Ribs”, 2003, International Journal of Thermal Sciences, Vol. 42, pp. 267-282, Doi: 10.1016/S1290-0729(02)00026-1.
    [107] J. H. Kim, T. W. Simon and R. Viskanta, “Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results”, 1993, Journal of Heat Transfer, Vol. 115, pp. 5–6, DOI: 10.1115/1.2910670.
    [108] Y. S. Liu, “Experimental Studies of Fluid Flow in Two-Pass Parallelogram Channels With Smooth Wall and Attached/Detached 90-Degree Rib Arrays”, 2014, Master thesis, National Tsing Hua University, Taiwan.
    [109] B. V. Johnson, J. H. Wagner and G. D. Steuber, “Effects of Rotation on Coolant Passage Heat Transfer. Volume II-Coolant Passages With Trips Normal and Skewed to the Flow”, 1993, National Aeronautics and Space Administration, Washington, DC, Report No. NASA-CR-4396-VOL-2.
    [110] W. L. Fu, L. M. Wright, and J. C. Han, “Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45 Degree Ribbed Walls”, 2006, Journal of Heat Transfer, Vol. 28, No. 11, pp. 1130-1141, DOI: 10.1115/1.2352782.
    [111] T. M. Liou, S. W. Chang, C. C. Yang and Y. A. Lan, “Thermal Performance of a Radially Rotating Twin-Pass Smooth-Walled Parallelogram Channel”, 2014, Journal of Turbomachinery, Vol. 136, pp. 121007(1-14), Doi: 10.1115/ 1.4028239.
    [112] L. Wang and B. Sundén, “Experimental investigation of local heat transfer in a square duct with various-shaped ribs”, 2007, Heat Mass Transfer, Vol. 43, pp. 759-766, Doi: 10.1007/s00231-006-0190-y.
    [113] S. Gupta, A. Chaube and P. Verma, “Augmented Heat Transfer in Square ducts with Transverse and Inclined Ribs with and without a gap”, 2013, International Journal of Current Engineering and Technology, Vol. 3, No. 2, pp. 688-694.
    [114] P. R. Chandra and J. C. Han, “Pressure drop and mass transfer in two-pass ribbed channels”, 1989, Journal of Thermophysics and Heat Transfer, Vol. 3, pp. 315-320.
    [115] T. M. Liou, S. W. Chang and C. C. Yang, “Heat Transfer and Pressure Drop Measurements of Rotating Twin-Pass Parallelogram Ribbed Channel”, 2014, International Journal of Thermal Sciences, Vol. 79, pp. 206-219, Doi: 10.1016/j.ijthermalsci.2014.01.005.
    [116] K. M. Kim, D. H. Lee and H. H. Cho, “Detailed Measurement of Heat/Mass Transfer and Pressure Drop In a Rotating Two-Pass Duct With Transverse Ribs”, 2007, Heat Mass Transfer, Vol. 43, pp. 801-815, Doi: 10.1007/s00231-006-0161-3.
    [117] Y. Li., H. Deng, G. Xu and S. Tian, “Heat Transfer and Pressure Drop In a Rotating Two-Pass Square Channel With Different Ribs At High Rotation Numbers”, June 15-19, 2015, Montréal, Canada, Proceedings of ASME Turbo Expo 2015, GT2015-44019.

    QR CODE