簡易檢索 / 詳目顯示

研究生: 周宇軒
Chou, Yu Hsuan
論文名稱: 陰極沈積製備鎳鈷氫氧化物及其在超級電容器的應用
Preparation of Ni-Co hydroxide by cathodic deposition and the applications on supercapacitors
指導教授: 胡啟章
Hu, Chi Chang
口試委員: 董瑞安
溫惠玲
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 147
中文關鍵詞: 超級電容器氫氧化物石墨烯奈米碳管氫氧化鎳氫氧化鈷
外文關鍵詞: Supercapacitor, Hydroxide, Graphene, Carbon nanotube, Nickel hydroxide, Cobalt hydroxide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用電化學陰極沈積法製備鎳鈷氫氧化物((Ni-Co)(OH)2),並將材料應用在超級電容器上。實驗內容主要可分為三部分,第一部分為利用實驗設計法探討影響(Ni-Co)(OH)2電化學表現的因素,並找出製備上之最佳條件組合。第二部分為合成(Ni-Co)(OH)2和奈米碳管的複合材料,以提高單位面積電容,並組裝成非對稱超級電容器,期望提升材料於電動車等儲能裝置上實際應用價值。第三部分探討不同基材對陰極沈積(Ni-Co)(OH)2的影響,找出造成電化學表現差異的因素,並利用化學氣相沈積將石墨烯附著於不同基材上,以下簡要地討論各章所包含的內容。
    第一部分藉由陰極沈積合成(Ni-Co)(OH)2,並以24全因素實驗設計進行分析,選定探討的四個因素分別如下,前驅物中鎳鈷比例、前驅物之pH值、沈積溫度及電流密度,目的為將(Ni-Co)(OH)2的比電容和高速掃描下的電容維持率提升。利用全因素實驗設計產生的回歸模型,進行陡升實驗,得到的最佳條件如下,Ni2+/(Ni2++Co2+)=0.35,pH值為3.60,沈積溫度為70℃,電流密度為5 mA/cm2。(Ni-Co)(OH)2的比電容可達1218.5 F g-1 (5 mV s-1),且100 mV s-1下電容維持率仍有71.8%。最後將最佳條件之(Ni-Co)(OH)2作為正極,活性碳作為負極,組裝成非對稱電容器,其可從0.166 V充電至1.6 V,且在10 A g-1下擁有16.7 W h kg-1的能量密度和7.2 kW kg-1的功率密度。
    第二部分藉由先在石墨電極表面塗布奈米碳管,再將(Ni-Co)(OH)2依前章得到之最佳條件沈積於此,重複此兩步驟合成似三明治層狀結構之複合材料,其單位面積電容可提升至1.55 F g-1。此外,從SEM圖發現,脈衝-休止法沈積相較於定電流沈積,能使(Ni-Co)(OH)2沈積入奈米碳管的孔隙中,整體材料在高速充放電下電容提升,此方法使活性材料利用率增加。藉由充放電測試,含有四層(Ni-Co)(OH)2的複合材料,電流密度2 A g-1下,單位面積電容高達3.68 F cm-2。最後將單層(Ni-Co)(OH)2之奈米碳管複合材料作為正極,活性碳作為負極,組裝成非對稱電容器,其可從0.166 V充電至1.6 V,且在10 A g-1下擁有17.1 W h kg-1的能量密度和7.2 kW kg-1的功率密度。
    第三部分將化學氣相沈積石墨烯後的泡沫鎳、不鏽鋼網和鈦片作為不同集電板,並於沈積上(Ni-Co)(OH)2後,比較發現泡沫鎳上之(Ni-Co)(OH)2分佈均勻且具高孔洞性,1 A g-1下比電容高達1593 F g-1,且因活性材料高達6.3 mg cm-2,單位面積電容提升至9.9 F cm-2。最後將此材料作為正極,活性炭作為負極,組裝成非對稱電容器,其可從0.2 V充電至1.65 V,且在10 A g-1下擁有21.8 W h kg-1的能量密度和7.2 kW kg-1的功率密度。


    This study is about the preparation of (Ni-Co)(OH)2 by cathodic deposition method and its applications on supercapacitors. The experiments were divided into three parts. The first part was focused on the design of experiment, which was used to study the factors that influence electrochemical performance of the (Ni-Co)(OH)2 and find an optimal condition for this synthesis. The second part was focused on synthesizing a sandwich-like (Ni-Co)(OH)2/carbon nanotubes (CNT) composite in order to increase the areal capacitance, then assembled as asymmetric supercapacitor to enlarge energy density. The goal is to enhance its potential for practical applicatipons. In the third part, we used chemical vapor deposition (CVD) to grow graphene on different substrates which acted as the current collectors for cathodic deposition of (Ni-Co)(OH)2. Then, we discussed the reasons that affected the electrochemiacal performance of (Ni-Co)(OH)2/graphene composite. The followings are the contents of each part.
    In the first part, we deposited the (Ni-Co)(OH)2 by cathodic deposition and made a 24 full factorial design of experiment (DOE). The four factors chosen were as below, Ni2+/(Ni2++Co2+), pH value of the precursor solution, deposition temperature, and deposition current. The goal is to increase the specific capacitance and improve the rate capability of the (Ni-Co)(OH)2. Finally, we did a steepest ascent experiment according to the regression model obtained from DOE, and the optimal conditions were obtained as below, 0.35 of Ni2+/(Ni2++Co2+), 3.60 of pH value, 70℃ of deposition temperature, and 5 mA/cm2 of current density. The highest specific capacitance was 1218.5 F g-1 (at 5 mV s-1) and rate retention (100 mV s-1) was 71.8%. Finally, using the optimal (Ni-Co)(OH)2 as the cathode combined with activated carbon (AC), the assembling asymmetric supercarpacitor can charge from 0.166 V to 1.6 V, exhibiting a energy density of 16.7 W h kg-1 and a power density of 7.2 kW kg-1 at 10 A g-1.
    In the second part, the sandwich-like were (Ni-Co)(OH)2/CNT exhibited a improved areal capacitance of 1.55 F cm-2. Seen from the SEM images, compared to the galvanostatic method, the pulse-rest method facilitated the (Ni-Co)(OH)2 depositing into the pores of CNT, which further improved the utilization of active materials and increase the specific capacitance and redox reversibility of the composite (Ni-Co)(OH)2/CNT. The composite (Ni-Co)(OH)2/CNT containing four layers of hydroxides exhibited a areal capacitance of 3.68 F cm-2 at 2 A g-1. Besides, combined with AC, the assembling asymmetric supercapacitor can charge from 0.166 V to 1.6 V, exhibiting a energy density of 17.1 W h kg-1 and a power density of 7.2 kW kg-1 at 10 A g-1.
    In the third part, comparing the composites (Ni-Co)(OH)2/graphene grown on different substrates including Ni foam, stainless steel mesh, and Ti foil, we found that (Ni-Co)(OH)2/graphene on Ni foam was uniformly deposited and highly porous, exhibiting the highest specific capacitance of 1593 F g-1 and areal capacitance of 9.9 F cm-2 . Besides, combined with AC, the assembling asymmetric supercapacitor can charge from 0.2 V to 1.6 V, exhibiting a energy density of 17.1 W h kg-1 and a power density of 7.2 kW kg-1 at 10 A g-1.

    第一章 緒論及理論基礎 1 1-1 電化學原理 1 1-1-1 電化學反應系統 1 1-1-2 影響電化學系統之因素 3 1-2 電化學電容器 6 1-2-1 電化學電容器之分類 7 1-2-2 電化學電容器之測量 9 1-3 電化學沈積金屬氧化物之原理 15 1-4 實驗設計法 19 1-4-1 前言 19 1-4-2 部分因素實驗設計法 20 1-4-3 應答曲面設計 24 1-5 文獻回顧 26 1-5-1 氫氧化鎳 26 1-5-2 氫氧化鈷 29 1-5-3 鎳鈷氫氧化物 30 1-5-4 氫氧化物與碳材之複合材料 32 1-6 研究動機 35 第二章 實驗方法與步驟 36 2-1 實驗藥品與儀器 36 2-1-1 實驗藥品 36 2-1-2 實驗儀器 37 2-2 石墨電極的製備與前處理 38 2-3 電化學沈積方法與步驟 39 2-3-1 三極式電化學系統 39 2-3-2 控制電流法 41 2-3-3 脈衝-反轉法與脈衝-休止法 43 2-4 電化學實驗 44 2-4-1 循環伏安掃描 (Cyclic Voltammetry, CV) 44 2-4-2 電流-反轉計時電位法 45 2-5 材料分析 47 2-5-1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 47 2-5-2 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 47 2-5-3 感應耦合電漿質譜分析儀 (Inductively Coupled Plasma-Mass Spectrometr, ICP-ms) 48 2-5-4 X光繞射分析(X-ray Diffraction Analysis, XRD) 51 第三章 以實驗設計法控制鎳鈷氫氧化物之電容表現 53 3-1 前言 53 3-2 實驗方法 53 3-3 全因素實驗設計法 54 3-4 變異數分析 (Analysis of variables, ANOVA) 57 3-5 陡升/陡降實驗 (Steepest Ascent/descent Experiment) 64 3-6 材料分析 67 3-7 非對稱超級電容器之組裝 74 3-8 結論 78 第四章 添加奈米碳管於鎳鈷氫氧化物之合成與探討 80 4-1 前言 80 4-2 實驗方法 80 4-3 添加奈米碳管對電極材料之影響 83 4-4 脈衝-休止法對電極材料之影響 87 4-5 層狀結構電極材料之電化學表現 95 4-6 非對稱超級電容器之組裝 100 4-7 結論 105 第五章 探討不同集電板對電化學表現的影響 107 5-1 前言 107 5-2 實驗方法 107 5-3 電化學表現 110 5-4 材料分析 116 5-5 非對稱超級電容器之組裝 121 5-6 探討不同材料組成非對稱超級電容器的差異 125 5-7 結論 130 第六章 總結與未來展望 132 參考文獻 137

    1. Bard, A.J. and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 1980, Singapore: John Wiley & Sons.
    2. Crow, D.R., Principles and Applications of Electrochemistry. 2nd ed. ed. 1979, London: Chapman and Hall Ltd.
    3. Pletcher, D., A First Course in Ekectrode Processes. 1991, England: The Electrochemical Consultancy.
    4. 胡啟章, 電化學原理理與方法. 初版 ed. 2002: 五南圖書.
    5. Pletcher, D. and F.C. Walsh, Industrial Electrochemistry. 1990: Chapman and Hall Ltd. N. Y.
    6. Galizzoli, D., F. Tantardini, and S. Trasatti, Journal of Applied Electrochemistry, 1975. 5: p. 203-214.
    7. 張光輝, 循環伏安製備含水釕銥氧化物於電化學電容器的應用, in 化工研究所. 2000, 國立中正大學.
    8. Couper, A.M., D. Pletcher, and F.C. Walsh, Chemical Reviews, 1990. 90: p. 837-865.
    9. Kotz, R. and M. Carlen, Electrochimica Acta, 2000. 45: p. 2483-2495.
    10. Nomoto, S., et al., Journal of Power Sources, 2001. 97-98: p. 807-811.
    11. Kanani, N., Electroplating: Basic Principles, Processes, and Practice. 2005: Oxford: Elsevier Advanced Technology.
    12. 張國興 and 胡啟章, 電化學合成奈米結構之過渡金屬氧化物與其應用. 化工技術, 民國98年4月. 17.
    13. Pourbaix, M., Atlas of ElectrochemicalEqullibria in Aqueous Solutions. 1974: Texas: NACE.
    14. Tsai, W.L., Electrochemistry: Building on bubbles in metal electrodeposition Nature, 2002. 417: p. 139.
    15. Gal-Or, L., I. Silberman, and R. Chaim, Electrolytic ZrO2 Coatings: I. Electrochemical Aspects. Journal of The Eletrochemical Society, 1991. 138: p. 1939-1942.
    16. Yoshida, T., Self-Assembly of Zinc Oxide Thin Films Modified with Tetrasulfonated Metallophthalocyanines by One-Step Electrodeposition. Chemistry of Materials, 1999. 11: p. 2657-2667.
    17. Jayashree, R.S. and P.V. Kamath, Nickel hydroxide electrodeposition from nickel nitrate solutions: mechanistic studies. 2001. 93: p. 273-278.
    18. Chang, S.T., I.C. Leu, and M.H. Hon, Preparation and Characterization of Nanostructured Tin Oxide Films by Electrochemical Deposition. Electrochemical and Solid-State Letters, 2002. 5: p. C71-C74.
    19. Karuppuchamy, S., Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics, 2002. 151: p. 19-27.
    20. Hu, C.C., H.C. Hsu, and K.H. Chang, Cathodic Deposition of TiO2: Effects of H2O2 and Deposition Modes. Journal of The Electrochemical Society, 2012. 159: p. 418-424.
    21. Hu, C.C., C.C. Huang, and K.H. Chang, A novel solution for cathodic deposition of porous TiO2 films. Electrochemistry Communications, 2009. 11: p. 434-437.
    22. Box, G.E.P., W.G. Hunter, and J.S. Hunter, Statistics for Experiments. 1978, New York: Wiely.
    23. Montgomery, D.C., Design and Analysis of Experiment. 4th ed. 1997, Singapore: John Wiely & Sons, Inc.
    24. Box, G.E.P., W.G. Hunter, and J. Roy, Statist. Soc. 1951. B13.
    25. Hu, C.C. and C.Y. Cheng, Anodic deposition of nickel oxides for the nickel-based batteries. Journal of Power Sources, 2002. 111: p. 137-144.
    26. Hu, C.C. and C.Y. Cheng, Ideally Pseudocapacitive Behavior of Amorphous Hydrous Cobalt-Nickel Oxide Prepared by Anodic Deposition. Electrochemical and Solid-State Letters, 2002. 5: p. A43-A46.
    27. Pontie, M., H. Lecture, and F. Berdioui, Improvement in the performance of a nickel complex-based electrochemical sensor for the detection of nitric oxide in solution. Sensors and Actuators B: Chemical, 1999. 56: p. 1-5.
    28. Wen, T.C., C.C. Hu, and Y.J. Li, The Redox Behavior of Electroless Ni/PTFE Deposits in  KOH  Journal of The Electrochemical Society, 1993. 140: p. 2554-2558.
    29. Bode, H., K. Dehmelt, and J. Witte, Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat Electrochimica Acta, 1966. 11: p. 1079-1087.
    30. Wehrens-Dijksma and M.a.P.H.L. Notten, Electrochemical Quartz Microbalance characterization of Ni(OH)2-based thin film electrodes. Electrochimica Acta, 2006. 51: p. 3609–3621.
    31. Kamath, P.V., Stabilized α   ‐   Ni  (    OH    )  2 as Electrode Material for Alkaline Secondary Cells. Journal of The Electrochemical Society, 1994. 141: p. 2956-2959.
    32. Oliva, P., Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources, 1982. 8: p. 229-255.
    33. Corrigan, D.A.a.S.L.K., Electrochemical and Spectroscopic Evidence on the Participation of Quadrivalent Nickel in the Nickel Hydroxide Redox Reaction. Journal of The Electrochemical Society, 1989(136): p. 613-619.
    34. Barnard, R., C.F. Randell, and F.L. Tye, Studies concerning charged nickel hydroxide electrodes I. Measurement of reversible potentials. Journal of Applied Electrochemistry, 1980. 10: p. 109-125.
    35. Liu, K.C.a.M.A.A., Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors. Journal of The Electrochemical Society, 1996. 143: p. 124-130.
    36. Wang, Y.-g.a.Y.-y.X., Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochimica Acta, 2006. 51: p. 3223-3227.
    37. Zhao, Zhou, and Li, Effects of Deposition Potential and Anneal Temperature on the Hexagonal Nanoporous Nickel Hydroxide Films. Chemistry of Materials, 2007. 19: p. 3882-3891.
    38. Zhao, D.-D., Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochemistry Communications, 2007. 9: p. 869-874.
    39. Trasatti, S., Physical electrochemistry of ceramic oxides. Electrochimica Acta, 1991. 36: p. 225-241.
    40. Lee, Y.S., C.C. Hu, and T.C. Wen, Oxygen Evolution on Co‐Cu‐Zn Ternary Spinel Oxide‐Coated Electrodes in Alkaline Solution: Integration of Statistical, Electrochemical, and Textural Approaches. Journal of The Electrochemical Society, 1996. 143: p. 1218-1225.
    41. Schumacher, L.C., Semiconducting and electrocatalytic properties of sputtered cobalt oxide films. Electrochimica Acta, 1990. 35: p. 975-984.
    42. Fonseca, d., et al., The electrochromic effect in cobalt oxide thin films. Advanced Materials, 1991. 3: p. 553-555.
    43. Monk and P.M.S.a.S. Ayub, Solid-state properties of thin film electrochromic cobalt–nickel oxide. Solid State Ionics, 1997. 99: p. 115-124.
    44. Larcher, D., The Electrochemical Reduction of Co3  O  4 in a Lithium Cell. Journal of Materials Chemistry, 2002. 149: p. A234-A241.
    45. Ceder, G., Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 1998. 392: p. 694-696.
    46. Hosono, E., Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. Journal of Power Sources, 2006. 158: p. 779-783.
    47. Srinivasan, V.a.J.W.W., Capacitance studies of cobalt oxide films formed via electrochemical precipitation. Journal of Power Sources, 2002. 108: p. 15-20.
    48. Kong, L.-B., Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. Journal of Power Sources, 2009. 194: p. 1194-1201.
    49. Simon, P.a.Y.G., Materials for Electrochemical Capacitors. NatMater, 2008. 7: p. 845-854.
    50. Rolison, D.R., Multifunctional 3D nanoarchitectures for energy storage and conversion. Chemical Society Reviews, 2009. 38: p. 226-252.
    51. Wei, T.-Y., Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chemistry of Materials, 2009. 21: p. 3228-3233.
    52. Gao, Y., Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. Journal of Power Sources, 2010. 195: p. 1757-1760.
    53. Yuan, C., Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. Journal of Materials Chemistry, 2011. 21: p. 18183-18185.
    54. Xu, J., Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochimica Acta, 2010. 56: p. 732-736.
    55. Wu, J.B., Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film. Electrochimica Acta, 2011. 56: p. 7163-7170.
    56. Hosono, E., Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4. Journal of Materials Chemistry, 2005. 15: p. 1938-1945.
    57. Pauporté, T., Direct Low-Temperature Deposition of Crystallized CoOOH Films by Potentiostatic Electrolysis. Journal of The Electrochemical Society, 2005. 152: p. C49-C53.
    58. Mansour, C., Protective coating for MCFC cathode: Low temperature potentiostatic deposition of CoOOH on nickel in aqueous media containing glycine. Journal of Power Sources, 2006. 156: p. 23-27.
    59. McGovern, W.R., Formation of Chromate Conversion Coatings on Al‐ Cu‐Mg Intermetallic Compounds and Alloys. Journal of The Electrochemical Society, 2000. 147: p. 4494-4501.
    60. Nakaoka, K., K. Ogura, and M. Nakayama, Electrochemical Deposition of Spinel-Type Cobalt Oxide from Alkaline Solution of Co2  +   with Glycine. Journal of The Electrochemical Society, 2002. 149: p. C159-C163.
    61. Casella, I.G.a.M.G., Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. Journal of Electroanalytical Chemistry, 2002. 534: p. 31-38.
    62. Hu, C.C., K.H. Chang, and C.C. Wang, Two-step hydrothermal synthesis of Ru–Sn oxide composites for electrochemical supercapacitors. Electrochimica Acta, 2007. 52: p. 4411-4418.
    63. Hu, C.C., Anodic composite deposition of RuO2·xH2O–TiO2 for electrochemical supercapacitors. Electrochemistry Communications, 2009. 11: p. 1631-1634.
    64. Oshitani, M., Development of a Pasted Nickel Electrode with High Active Material Utilization. Journal of The Electrochemical Society, 1989. 136: p. 1590-1593.
    65. Chen, J., Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 1999. 146: p. 3606-3612.
    66. Gupta, V., S. Gupta, and N. Miura, Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. Journal of Power Sources, 2008. 175: p. 680-685.
    67. Hu, Z.-A., Synthesis and electrochemical characterization of mesoporous CoxNi1−x layered double hydroxides as electrode materials for supercapacitors. Electrochimica Acta, 2009. 54: p. 2737-2741.
    68. Zhong, J.-H., Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. Journal of Materials Chemistry, 2012. 22: p. 5656-5665.
    69. Wang, G., Nickel and cobalt oxide composite as a possible electrode material for electrochemical supercapacitors. Journal of Power Sources, 2012. 217: p. 554-561.
    70. Su, L., L. Gong, and J. Gao, The supercapacitive performances of Co(OH)2/Ni(OH)2 composites in lithium hydroxide solution: Selection of electrolyte and effect of weight ratio. Journal of Power Sources, 2012. 209: p. 141-146.
    71. Gong, X., et al., Nickel-Cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors. Journal of Power Sources, 2014. 267: p. 610-616.
    72. Salunkhe, R.R., et al., Binary metal hydroxide nanorods and multi-walled carbon nanotube composites for electrochemical energy storage applications. Journal of Materials Chemistry, 2012. 22(40): p. 21630-21635.
    73. Huang, L., et al., Hybrid Composite Ni(OH)(2)@NiCo2O4 Grown on Carbon Fiber Paper for High-Performance Supercapacitors. Acs Applied Materials & Interfaces, 2013. 5(21): p. 11159-11162.
    74. Wang, Z.-C., et al., Fabrication of Multi-walled Carbon Nanotubes/Nickel Nano-composite Films By Electrochemical Processing. 2008 2nd Ieee International Nanoelectronics Conference, Vols 1-3. 2008. 539-541.
    75. Zhu, J., et al., 3D Carbon/Cobalt-Nickel Mixed-Oxide Hybrid Nanostructured Arrays for Asymmetric Supercapacitors. Small, 2014. 10(14): p. 2937-2945.
    76. Wang, L., et al., Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. International Journal of Hydrogen Energy, 2014. 39(15): p. 7876-7884.
    77. Jiang, W.C., et al., Ternary Hybrids of Amorphous Nickel Hydroxide-Carbon Nanotube-Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. Advanced Functional Materials, 2015. 25(7): p. 1063-1073.
    78. Kumar, N. and H.S. Panda, Facile synthesis of amorphous Co/Ni hydroxide hierarchical films and the study of their morphology and electrochemical properties. Rsc Advances, 2015. 5(33): p. 25676-25683.
    79. Su, Y.Z., et al., Amorphous Ni(OH)(2) @ three-dimensional Ni core-shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. Journal of Materials Chemistry A, 2014. 2(34): p. 13845-13853.
    80. Chu, Q., et al., Hierarchical NiCo2O4@nickel-sulfide nanoplate arrays for high-performance supercapacitors. Journal of Power Sources, 2015. 276(0): p. 19-25.
    81. Syedvali, P., et al., In situ fabrication of graphene decorated microstructured globe artichokes of partial molar nickel cobaltite anchored on a Ni foam as a high-performance supercapacitor electrode. Rsc Advances, 2015. 5(48): p. 38407-38416.
    82. Cheng, H.L. and H.M. Duong, Three dimensional carbon nanotube/nickel hydroxide gels for advanced supercapacitors. Rsc Advances, 2015. 5(38): p. 30260-30267.
    83. Wu, J., et al., Hierarchical three-dimensional NiCo2O4 nanoneedle arrays supported on Ni foam for high-performance supercapacitors. Rsc Advances, 2015. 5(32): p. 25304-25311.
    84. Li, M., et al., Asymmetrical Supercapacitor Composed of Thin Co(OH)(2) Nanoflakes on Three-Dimensional Ni/Si Microchannel Plates with Superior Electrochemical Performance. Electrochimica Acta, 2014. 149: p. 18-27.
    85. Yang, L., et al., Hierarchically Porous Nickel Oxide Nanosheets Grown on Nickel Foam Prepared by One-Step In Situ Anodization for High-Performance Supercapacitors. Chemistry-an Asian Journal, 2014. 9(6): p. 1579-1585.
    86. Chen, H., et al., One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance. Advanced Energy Materials, 2013. 3(12): p. 1636-1646.
    87. Zhang, G.H., et al., Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy, 2013. 2(5): p. 586-594.
    88. Huang, L., et al., Nickel-Cobalt Hydroxide Nanosheets Coated on NiCo2O4 Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors. Nano Letters, 2013. 13(7): p. 3135-3139.
    89. Tang, Z., C.-h. Tang, and H. Gong, A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes. Advanced Functional Materials, 2012. 22(6): p. 1272-1278.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE