簡易檢索 / 詳目顯示

研究生: 郭愛琳
Kusuma, Irene Wardhani
論文名稱: 合成12、6、4錫團簇及開發含硫元素之光阻材料並應用於極紫外光微影術
Synthesis and Characterization of 12, 6, and 4-Tin Oxide Clusters and Development of Resist Involving Sulfur for Photoresist Material Applied to Extremely Ultraviolet Photolithography
指導教授: 劉瑞雄
Liu, Rai-Shung
口試委員: 邱博文
Chiu, Po-Wen
許博淵
Shew, Bor-Yuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 392
中文關鍵詞: 光刻膠EUV錫簇
外文關鍵詞: Photoresist, EUV, Tin cluster
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體近年來的發展突飛猛進,許多研究致力於細緻化光蝕刻技術,追求更高效、更快速的運算技術能廣泛應用於電子設備上,因此為了達到奈米級尺度,應用了波長13.5奈米的極紫外光刻技術,引領下一世代的微影技術。含金屬的光阻劑擁有高光密度,例如氧化錫團簇,我們成功地合成出含硫的六-錫團簇,作為新專利候選。我們應用極紫外光進行曝光,研究十二、六、四-錫團簇,以及帶不同酸根的團簇,經由曝光後,我們測試並探討線寬與靈敏度,以獲得更好的光阻材料。


    Semiconductor have been growing rapidly and keep focus on downscaling the feature sizes of photolithography in order to get more efficiency for faster processing and more affordable electronic devices. To reach the nanometer-size dimensions, we currently use Extreme ultraviolet (EUV) lithography at λ =13.5 nm as the leading candidate for the future generation imaging technology. Additionally, we utilize resists containing metals with high optical density, such as tin oxide nanoclusters. We have studied the photolysis of tin clusters of the type 12, 6, and 4 tin-SnOx using extreme ultraviolet light, and developed these clusters with various structure of carboxylic acid complexes. We also successfully synthesized a new structure of 6-tin cluster containing sulfur atom which is beyond patent. After the exposure, we test and discuss the resolution and sensitivity in order to gain insight to produce better photoresist.

    中文摘要 I Abstract II Table of Contents III List of Table VI List of Figure VII List of Scheme VIII 1. Introduction 1 1.1. Earlier EUV Resist Imaging 1 1.2. Metal-Containing Resists 2 2. Previous Work 4 2.1. 12-Tin Oxide Cluster Resists 4 2.2. 6-Tin Oxide Cluster Resists 5 2.3. New Structure of 6-Tin Oxo using 2-mercaptobenzoic acid 6 2.4. Silver Acid Cluster Resists 9 2.5. 4-Tin (butyl) Oxide Cluster Resists 10 2.6. 4-Tin (methyl) Oxide Cluster Resists 11 2.7. Interference Lithography 12 3. Result and Discussion 13 3.1. Present Work 13 3.2. The 12-Tin Oxide Cluster Molecules 13 3.3. The 6-Tin Oxide Cluster Molecules 17 3.4. The New 6-Tin Oxide Cluster Molecules 19 3.5. Silver Acid Cluster Molecules 21 3.6. The 4-Tin (Butyl) Oxide Cluster Molecules 22 3.7. The 4-Tin (Methyl) Oxide Cluster Molecules 25 3.8. Standard Operation System of Photoresist Preparation 27 3.9. Mechanism of 12-Tin Cluster 29 3.10. Result and Discussion of SEM and OM of 12-Tin Cluster Compounds 31 3.10.1. 2-(4-phenyl-1H-1,2,3-triazol-1-yl)acetic acid (3a-A) 31 3.10.2. 2-(4-(4-chlorophenyl)-1H-1,2,3-triazol-1-yl)acetic acid (3b-A) 33 3.10.3. 2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)acetic acid (3c-A) 35 3.10.4. 2-(4-isopropyl-1H-1,2,3-triazol-1-yl)acetic acid (3d-A) 38 3.10.5. 2-(4-chlorophenyl)-2-oxoacetic acid (5b-A) 40 3.10.6. 2-oxo-2-(p-tolyl)acetic acid (5c-A) 44 3.10.7. Summary of 12-tin oxo cluster SEM and OM result 45 3.11. Reaction Mechanism of 6-Tin Cluster After EUV Exposure 48 4. Conclusion 49 5. Experimental 50 5.1. General Rule Experiment 50 5.1.1. Solvent 50 5.1.2. Purification and Separation Method 50 5.1.3. Instrumentations 50 5.2. Experimental Procedures 51 5.2.1. Synthesize of Triazole Compounds 51 5.2.2. Synthesize of Dicarboxylic Compounds 53 5.2.3. Synthesize of 12-Tin Cluster Compound 54 5.2.4. Synthesize of 6-Tin Cluster Compound 55 5.2.5. Synthesize of 4-Tin (n-Butyl and Methyl) Cluster Compound 56 5.2.6. Synthesize of n-Butyltin Tribromo Compound 56 5.2.7. Synthesize of Silver Acid Compound 57 5.2.8. Synthesize of 6-tin Cluster from Silver Acid and BuSnBr3 57 6. Spectral Data 58 7. References 72 8. X-Ray 74 8.1. Crystal data for 12-tin cluster compound 3a-A 74 8.2. Crystal data for 12-tin cluster compound 3b-A 119 8.3. Crystal data for 6-tin cluster compound 7b-A 147 8.4. Crystal data for new 6-tin cluster compound 9b-C 160 8.5. Crystal data for 4-tin (butyl) cluster compound 3a-C 182 8.6. Crystal data for 4-tin (butyl) cluster compound 3d-C 201 8.7. Crystal data for 4-tin (butyl) cluster compound 5d-C 219 8.8. Crystal data for 4-tin (butyl) cluster compound 7c-C 256 8.9. Crystal data for 4-tin (methyl) cluster compound 5a-D 272 Supporting Information 289

    [1] G. Moore, Electronics, 1965, 38.
    [2] G. M. Gallatin, P. Naulleau, R. L. Brainard, “Fundamental Limits to EUV Photoresist”, Proc. SPIE, 2007 [doi: 10.1117/12.712346].
    [3] R.Brainard, “Photoresist for EUV Lithography”, Chapter 8 in EUV Litography, SPIE Press, Bellingham, Washington (2018) [doi: 10.1117/3.2305675.ch8].
    [4] Y. Ekinci, M. Vockenhuber, M. Hojeij, L. Wang, N. Mojarad, Proc. SPIE 8679
    (2013) 867910.
    [5] B, Cardineau, R. Del Re, M. Marnell, H. Al-Mashat, M. Vockenhuber, Y. Ekinci, C. Sarma, D. A. Freedman, and R. L. Brainard, Microelectronic Eng. 2014, 127, 44–50.
    [6] U. Hahn, A. Ge´gout, C. Duhayon, Y. Coppel, A. Saquet, J. O. Nierengarten, Chem. Commun., 2007, 516–518.
    [7] S.W. Ng, V.G.K. Das, G. Pelizzi, F. Vitali, Heteroat. Chem. 1990, 1, 433-438.
    [8] M. M. Amini, A. Azadmehr, V. Alijani, H. R. Khavasi, T. Hajiashrafi, A. N. Kharat, Inorganica Chimica Acta, 2009, 362, 355–360.
    [9] M. Bouâlam, R. Willem, M. Biesemans, B. Mahieu, M. Gielen, Heteroatom Chemistry, 1991, 2, 447–453.
    [10] R. R. Holmes, C. G. Schmid, V. Chandrasekhar, R. O. Day, J. M. Holmes, J. Am. Chem. Soc., 1987, 109, 1408-1414
    [11] T. S. B. Baul, D. Dutta, A. Duthie, N. Guchhait, B. G.M. Rocha, M. F. C. G. Silva, R. B. Mokhamatam, N. Raviprakash, S. K. Manna, Journal of Inorganic Biochemistry, 2017, 166, 34–48.
    [12] C. Vatsa, V. K. Jain, T. Kesavadas, E. R. T.Tiekink, Journal of Organometallic Chemistry, 1991, 408, 157-166.
    [13] F. Ribot, C. Sanchez, A. Meddour, M. Gielen, E. R. T. Tiekink, M. Biesemans, R. Willem, Journal of Organometallic Chemistry, 1998, 552, 177–186.
    [14] D. Fan, Y. Ekinci, J. Micro/Nanolith. MEMS MOEMS, 2016, 15(3), 033505 [doi: 10.1117/1.JMM.15.3.033505]
    [15] E. Buitrago, R. Fallica, D. Fan, T. S. Kulmala, M. Vockenhuber, Y. Ekinci, Microelectronic Engineering, 2016, 155, 44–49.
    [16] L. Noodleman., K, Sharpless, V. Fokin, J. Am. Chem. Soc. 2005, 127, 210-216.
    [17] Eychenne-Baron et al., Organometallics, 2000, Vol. 19, No. 10, 1940-1949.

    QR CODE