研究生: |
郭愛琳 Kusuma, Irene Wardhani |
---|---|
論文名稱: |
合成12、6、4錫團簇及開發含硫元素之光阻材料並應用於極紫外光微影術 Synthesis and Characterization of 12, 6, and 4-Tin Oxide Clusters and Development of Resist Involving Sulfur for Photoresist Material Applied to Extremely Ultraviolet Photolithography |
指導教授: |
劉瑞雄
Liu, Rai-Shung |
口試委員: |
邱博文
Chiu, Po-Wen 許博淵 Shew, Bor-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 392 |
中文關鍵詞: | 光刻膠 、EUV 、錫簇 |
外文關鍵詞: | Photoresist, EUV, Tin cluster |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體近年來的發展突飛猛進,許多研究致力於細緻化光蝕刻技術,追求更高效、更快速的運算技術能廣泛應用於電子設備上,因此為了達到奈米級尺度,應用了波長13.5奈米的極紫外光刻技術,引領下一世代的微影技術。含金屬的光阻劑擁有高光密度,例如氧化錫團簇,我們成功地合成出含硫的六-錫團簇,作為新專利候選。我們應用極紫外光進行曝光,研究十二、六、四-錫團簇,以及帶不同酸根的團簇,經由曝光後,我們測試並探討線寬與靈敏度,以獲得更好的光阻材料。
Semiconductor have been growing rapidly and keep focus on downscaling the feature sizes of photolithography in order to get more efficiency for faster processing and more affordable electronic devices. To reach the nanometer-size dimensions, we currently use Extreme ultraviolet (EUV) lithography at λ =13.5 nm as the leading candidate for the future generation imaging technology. Additionally, we utilize resists containing metals with high optical density, such as tin oxide nanoclusters. We have studied the photolysis of tin clusters of the type 12, 6, and 4 tin-SnOx using extreme ultraviolet light, and developed these clusters with various structure of carboxylic acid complexes. We also successfully synthesized a new structure of 6-tin cluster containing sulfur atom which is beyond patent. After the exposure, we test and discuss the resolution and sensitivity in order to gain insight to produce better photoresist.
[1] G. Moore, Electronics, 1965, 38.
[2] G. M. Gallatin, P. Naulleau, R. L. Brainard, “Fundamental Limits to EUV Photoresist”, Proc. SPIE, 2007 [doi: 10.1117/12.712346].
[3] R.Brainard, “Photoresist for EUV Lithography”, Chapter 8 in EUV Litography, SPIE Press, Bellingham, Washington (2018) [doi: 10.1117/3.2305675.ch8].
[4] Y. Ekinci, M. Vockenhuber, M. Hojeij, L. Wang, N. Mojarad, Proc. SPIE 8679
(2013) 867910.
[5] B, Cardineau, R. Del Re, M. Marnell, H. Al-Mashat, M. Vockenhuber, Y. Ekinci, C. Sarma, D. A. Freedman, and R. L. Brainard, Microelectronic Eng. 2014, 127, 44–50.
[6] U. Hahn, A. Ge´gout, C. Duhayon, Y. Coppel, A. Saquet, J. O. Nierengarten, Chem. Commun., 2007, 516–518.
[7] S.W. Ng, V.G.K. Das, G. Pelizzi, F. Vitali, Heteroat. Chem. 1990, 1, 433-438.
[8] M. M. Amini, A. Azadmehr, V. Alijani, H. R. Khavasi, T. Hajiashrafi, A. N. Kharat, Inorganica Chimica Acta, 2009, 362, 355–360.
[9] M. Bouâlam, R. Willem, M. Biesemans, B. Mahieu, M. Gielen, Heteroatom Chemistry, 1991, 2, 447–453.
[10] R. R. Holmes, C. G. Schmid, V. Chandrasekhar, R. O. Day, J. M. Holmes, J. Am. Chem. Soc., 1987, 109, 1408-1414
[11] T. S. B. Baul, D. Dutta, A. Duthie, N. Guchhait, B. G.M. Rocha, M. F. C. G. Silva, R. B. Mokhamatam, N. Raviprakash, S. K. Manna, Journal of Inorganic Biochemistry, 2017, 166, 34–48.
[12] C. Vatsa, V. K. Jain, T. Kesavadas, E. R. T.Tiekink, Journal of Organometallic Chemistry, 1991, 408, 157-166.
[13] F. Ribot, C. Sanchez, A. Meddour, M. Gielen, E. R. T. Tiekink, M. Biesemans, R. Willem, Journal of Organometallic Chemistry, 1998, 552, 177–186.
[14] D. Fan, Y. Ekinci, J. Micro/Nanolith. MEMS MOEMS, 2016, 15(3), 033505 [doi: 10.1117/1.JMM.15.3.033505]
[15] E. Buitrago, R. Fallica, D. Fan, T. S. Kulmala, M. Vockenhuber, Y. Ekinci, Microelectronic Engineering, 2016, 155, 44–49.
[16] L. Noodleman., K, Sharpless, V. Fokin, J. Am. Chem. Soc. 2005, 127, 210-216.
[17] Eychenne-Baron et al., Organometallics, 2000, Vol. 19, No. 10, 1940-1949.