簡易檢索 / 詳目顯示

研究生: 張永荏
Chang, Yung-Jen
論文名稱: 可充電鎂電池鎂金屬負極的放電/充電行為與顯微結構
Discharge/Charge Behavior and the Microstructure of Magnesium Metal Negative Electrode for Rechargeable Magnesium Battery
指導教授: 朱鵬維
Chu, Peng-Wei
口試委員: 胡啟章
Hu, Chi-Chang
林姿瑩
Lin, Tzu-Ying
林孟昌
Lin, Meng-Chang
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 可充電鎂電池鎂金屬負極放電/充電循環顯微結構全苯基錯合(APC)電解質
外文關鍵詞: rechargeable Mg battery, Mg metal negative electrode, discharge/charge cycle, microstructure, all phenyl complex (APC) electrolyte
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰電池系統(Lithium battery system)目前正面臨資源短缺、電容量限制以及安全性等的問題。鎂金屬因同時具有高體積電容量、高自然豐沛度與充電時不易形成枝晶等特色,以其作為負極材料的鎂電池系統(Magnesium battery system)成為具有開發潛力的選項之一。大部分的鎂電池系統研究主要專注於電解質開發以及其與鎂電池系統的匹配度,卻忽略了鎂金屬電極本身的充放電行為和經過不同循環次數後的電極顯微結構。因此,本論文將以純鎂、AZ31與LZ91鎂合金作為可充電鎂金屬電池負極,於All Phenyl Complex (APC)電解質中進行特定循環圈數的定電流放電/充電循環、電化學阻抗圖譜與動態極化掃描曲線分析,並針對特定循環圈數之電極顯微結構進行觀察,再與電化學結果作連結以探討不同鎂金屬負極的放電/充電機制。此外,也會比較純鎂、AZ31與LZ91作為可充電鎂金屬電池負極的放電/充電行為差異。
    當鎂金屬負極在進行放電時,可觀察到純鎂、AZ31與LZ91均為不均勻的剝除形貌,伴隨著多個局部放電孔洞,但AZ31與LZ91和純鎂相比呈現較高的放電孔洞密度。當放電完成後,電極表面的放電孔洞內與周圍區域會充滿錯合物離子團。若隨即進行後續的充電,所有鎂金屬負極皆會因放電孔洞內充滿著穩定態的錯合物離子團(Mg2Cl3+∙6THF)而無法在放電孔洞內沉積鎂鍍層。主要的還原反應則會由放電孔洞周圍的介穩態錯合物離子團(MgCl++∙5THF)進行,使得鎂鍍層在純鎂與AZ31電極表面偏好圍繞著放電孔洞進行沉積;而LZ91電極上的鎂鍍層則沒有明顯的繞孔形貌,此現象應和LZ91在剛放電完的電極表面有較純鎂與AZ31分布均勻且數量更多的介穩態MgCl+∙5THF有關。
    隨後對三種鎂金屬負極進行後續的放電/充電循環,發現純鎂在放電時會同時進行鎂鍍層與底材的剝除,使得部分鎂鍍層殘留於電極表面上,造成後續充電時會形成粒狀結構與多面體結構兩種明顯不同形貌的鎂鍍層。之後放電時則會因多面體結構鍍層相較於粒狀鍍層較為穩定且難以剝除,使後續剝除主要發生在粒狀鍍層區域。此行為也將導致純鎂放電時所需的過電位隨著循環圈數的增加而有所增加。AZ31與LZ91相較於純鎂具有更好的抵抗剝除能力,因此在放電時會優先進行鎂鍍層的剝除。當鍍層被完全剝除而底材裸露後,放電所需的過電位也隨之增加。因為AZ31和LZ91主要都是在合金表面進行鎂鍍層的沉積與剝除,所以能夠表現出較純鎂均勻的鍍層形貌與分布。
    最後,無論是在哪種鎂金屬負極上進行放電/充電循環,同一圈內的充電過電位皆會隨著時間的進行而增加,且每一圈的充電過電位也會隨著循環圈數的增加而增加,此趨勢與隨著循環進行而下降的電極表面錯合物離子團濃度有關。


    Lithium battery systems are currently facing problems including resources shortage, capacity limitation, and safety. Magnesium (Mg) metal has the advantages of high volumetric capacity, high natural abundance, and less dendritic growth during charging, so Mg battery systems using Mg as negative electrode become one of the promising alternatives to lithium batteries. Most studies about Mg battery systems focus on developing novel electrolytes and their feasibilities, while the charge/discharge behavior and the resultant microstructure of the Mg metal electrode after cycles are overlooked. Therefore, this study used pure Mg, AZ31, and LZ91 Mg alloys as the negative electrodes for Mg battery systems. Constant current discharge/charge cycles, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves were conducted in an all phenyl complex (APC) electrolyte. After specific cycles, the resultant microstructure of the electrode was investigated and combined with the electrochemical results to discuss the discharge/charge mechanism. In addition, the difference in discharge/charge behavior of pure Mg, AZ31, and LZ91 will also be compared.
    When discharging the pristine Mg metal negative electrodes, the stripping morphology of pure Mg, AZ31, and LZ91 was inhomogeneous with numerous localized discharge holes. However, AZ31 and LZ91 show a higher density of discharge holes than pure Mg. Right after discharge, complex ions are distributed inside and near the discharge holes on the electrode surface. If the subsequent charge was conducted right after discharge, no Mg plating can be observed in the discharge holes because they are filled with stable complex ions (Mg2Cl3+∙6THF). The reduction reaction proceeds through the metastable complex ions (MgCl+∙5THF) near the discharge holes, resulting in preferential deposition of Mg along the circumferences of the discharge holes on pure Mg and AZ31 electrodes. In contrast, the plated Mg on LZ91 does not have this preference, which could be related to the more uniform and higher amounts of metastable MgCl+∙5THF on the LZ91 electrode surface after discharge.
    Subsequent discharge/charge on the three Mg metal negative electrodes reveals that, on pure Mg, stripping of plated Mg and Mg substrate proceeds in parallel during discharge, resulting in incomplete stripping of the plated Mg. This leads to two distinct morphologies on pure Mg during charging: granular and faceted Mg structures. Because the faceted Mg structure is more stable and harder to be stripped than the granular structure, later stripping mainly happens on the granular Mg structure region. This also results in the increase in discharge overpotential with cycle number on pure Mg electrode. In contrast, AZ31 and LZ91 show a higher stripping resistance than pure Mg, so the plated Mg was preferentially stripped during discharge. When the plated Mg was completely stripped, a larger discharge overpotential was needed to strip the alloy substrate. Consequently, the plating and stripping morphologies are more uniform on AZ31 and LZ91 than pure Mg because they proceed on the alloy surface.
    Lastly, no matter on which Mg negative electrode the discharge/charge cycle performed, the charge overpotential increases with charging time within a cycle, and the charge overpotential of every cycle increases with cycle number. This trend is related to the decreasing complex ion concentrations near the electrode surface as the cycle goes on.

    摘要 i Abstract iii 致謝 v 目錄 vii 圖目錄 x 表目錄 xii 第一章 緒論 1 第二章 文獻回顧 3 2.1 可充電鎂金屬電池介紹 3 2.1.1 可充電鎂金屬電池簡介 3 2.1.2 可充電鎂金屬電池的發展 4 2.1.3 APC電解質介紹 6 2.2 可充電鎂金屬電池相關研究 7 2.2.1 可充電鎂金屬電池的電解質性能測試 7 2.2.2 可充電鎂金屬電池充電/放電行為與鎂金屬負極的顯微結構 9 第三章 實驗方法與步驟 13 3.1 實驗流程 13 3.2 電極試片/電解質製備 14 3.2.1 鎂金屬電極試片製備 14 3.2.2 白金電極試片製備與前處理 15 3.2.3 電解質配製 16 3.3 電化學量測 17 3.3.1 電化學實驗架構 17 3.3.2 循環伏安法 20 3.3.3 庫倫效率測定 20 3.3.4 定電流放電/充電循環 21 3.3.5 電化學阻抗圖譜與分析 22 3.3.6 動態極化掃描曲線 23 3.4 放電/充電循環後的顯微結構觀察 23 3.4.1 放電/充電循環後之試片表面顯微結構觀察 23 3.4.2 放電/充電循環後之試片橫截面顯微結構觀察 24 第四章 實驗結果 25 4.1 電化學量測 25 4.1.1 電解質性能測試 25 4.1.2 放電/充電循環 27 4.1.3 電化學阻抗圖譜與分析 30 4.1.4 動態極化掃描曲線 32 4.2 鎂金屬負極放電/充電後的顯微結構 33 4.2.1 純鎂負極放電/充電後的表面顯微結構 33 4.2.2 鎂合金負極放電/充電後的表面顯微結構 41 4.2.3 鎂金屬負極放電/充電後的橫截面顯微結構 46 第五章 討論 50 5.1 放電/充電循環 50 5.1.1 電阻壓降修正 50 5.1.2 純鎂負極顯微結構、放電/充電機制與電化學結果探討 52 5.1.3 鎂合金負極顯微結構、放電/充電機制與電化學結果探討 56 5.2 不同鎂金屬對應電極系統的庫倫效率 60 第六章 結論 63 第七章 未來展望 65 參考資料 66 附錄一 70 附錄二 74 附錄三 75

    [1] R. Dominko, J. Bitenc, R. Berthelot, M. Gauthier, G. Pagot, V. Di Noto, Magnesium batteries: Current picture and missing pieces of the puzzle, Journal of Power Sources, 478 (2020).
    [2] R.E. Doe, R. Han, J. Hwang, A.J. Gmitter, I. Shterenberg, H.D. Yoo, N. Pour, D. Aurbach, Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries, Chem Commun (Camb), 50 (2014) 243-245.
    [3] E.G. Nelson, S.I. Brody, J.W. Kampf, B.M. Bartlett, A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion, J. Mater. Chem. A, 2 (2014) 18194-18198.
    [4] S. He, J. Luo, T.L. Liu, MgCl 2/AlCl 3 electrolytes for reversible Mg deposition/stripping: electrochemical conditioning or not?, Journal of Materials Chemistry A, 5 (2017) 12718-12722.
    [5] I. Shterenberg, M. Salama, Y. Gofer, E. Levi, D. Aurbach, The challenge of developing rechargeable magnesium batteries, MRS Bulletin, 39 (2014) 453-460.
    [6] A. Kopač Lautar, J. Bitenc, T. Rejec, R. Dominko, J.-S. Filhol, M.-L. Doublet, Electrolyte reactivity in the double layer in mg batteries: an interface potential-dependent DFT study, Journal of the American Chemical Society, 142 (2020) 5146-5153.
    [7] D.J. Wetzel, M.A. Malone, R.T. Haasch, Y. Meng, H. Vieker, N.T. Hahn, A. Gölzhäuser, J.-M. Zuo, K.R. Zavadil, A.A. Gewirth, Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling, ACS Applied Materials & Interfaces, 7 (2015) 18406-18414.
    [8] Z. Zhao-Karger, M.E.G. Bardaji, O. Fuhr, M. Fichtner, A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries, Journal of Materials Chemistry A, 5 (2017) 10815-10820.
    [9] W.M. Haynes, D.R. Lide, T. Bruno, Abundance of Elements in the Earth’s Crust and in the Sea, CRC handbook of chemistry and physics, 97 (2016) 14-17.
    [10] H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ, Sci, 6 (2013) 2265-2279.
    [11] R. Spotnitz, J. Franklin, Abuse behavior of high-power, lithium-ion cells, Journal of power sources, 113 (2003) 81-100.
    [12] P. Jolibois, Formula of the organomagnesium derivative and magnesium hydride, Comptes rendus, 155 (1912) 353-355.
    [13] T.D. Gregory, R.J. Hoffman, R.C. Winterton, Nonaqueous Electrochemistry of Magnesium: Applications to Energy Storage, Journal of the Electrochemical Society, 137 (1990) 775-780.
    [14] J.H. Connor, W.E. Reid, G.B. Wood, Electrodeposition of metals from organic solutions: V. Electrodeposition of magnesium and magnesium alloys, Journal of The Electrochemical Society, 104 (1957) 38.
    [15] C. Liebenow, Reversibility of electrochemical magnesium deposition from Grignard solutions, Journal of applied electrochemistry, 27 (1997) 221-225.
    [16] D. Aurbach, M. Moshkovich, A. Schechter, R. Turgeman, Magnesium deposition and dissolution processes in ethereal grignard salt solutions using simultaneous EQCM‐EIS and in situ FTIR spectroscopy, Electrochemical and Solid-State Letters, 3 (1999) 31.
    [17] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Prototype systems for rechargeable magnesium batteries, Nature, 407 (2000) 724-727.
    [18] V. Di Noto, M. Fauri, Batterie primarie (non ricaricabili) e secondarie (ricaricabili) a base di elettroliti polimerici basati su ioni magnesio, PD99A000179, (1999).
    [19] V. Di Noto, M. Fauri, Magnesium-based primary (non-rechargeable) and secondary (rechargeable) batteries, in, Google Patents, 2001.
    [20] S.-Y. Ha, Y.-W. Lee, S.W. Woo, B. Koo, J.-S. Kim, J. Cho, K.T. Lee, N.-S. Choi, Magnesium (II) bis (trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries, ACS applied materials & interfaces, 6 (2014) 4063-4073.
    [21] Z. Lu, A. Schechter, M. Moshkovich, D. Aurbach, On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions, Journal of Electroanalytical Chemistry, 466 (1999) 203-217.
    [22] I. Shterenberg, M. Salama, H.D. Yoo, Y. Gofer, J.-B. Park, Y.-K. Sun, D. Aurbach, Evaluation of (CF3SO2) 2N−(TFSI) based electrolyte solutions for Mg batteries, Journal of The Electrochemical Society, 162 (2015) A7118.
    [23] H.D. Yoo, S.-D. Han, I.L. Bolotin, G.M. Nolis, R.D. Bayliss, A.K. Burrell, J.T. Vaughey, J. Cabana, Degradation mechanisms of magnesium metal anodes in electrolytes based on (CF3SO2) 2N–at high current densities, Langmuir, 33 (2017) 9398-9406.
    [24] X. Li, T. Gao, F. Han, Z. Ma, X. Fan, S. Hou, N. Eidson, W. Li, C. Wang, Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive, Advanced Energy Materials, 8 (2018) 1701728.
    [25] S.-B. Son, T. Gao, S.P. Harvey, K.X. Steirer, A. Stokes, A. Norman, C. Wang, A. Cresce, K. Xu, C. Ban, An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes, Nature Chemistry, 10 (2018) 532-539.
    [26] R. Lv, X. Guan, J. Zhang, Y. Xia, J. Luo, Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase, Natl Sci Rev, 7 (2020) 333-341.
    [27] X.-C. Hu, Z.-Z. Shen, J. Wan, Y.-X. Song, B. Liu, H.-J. Yan, R. Wen, L.-J. Wan, Insight into interfacial processes and degradation mechanism in magnesium metal batteries, Nano Energy, 78 (2020).
    [28] B. Yang, L. Xia, R. Li, G. Huang, S. Tan, Z. Wang, B. Qu, J. Wang, F. Pan, Superior plating/stripping performance through constructing an artificial interphase layer on metallic Mg anode, Journal of Materials Science & Technology, 157 (2023) 154-162.
    [29] O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach, Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries, Journal of the Electrochemical Society, 155 (2007) A103.
    [30] R. Deivanayagam, B.J. Ingram, R. Shahbazian-Yassar, Progress in development of electrolytes for magnesium batteries, Energy Storage Materials, 21 (2019) 136-153.
    [31] C.J. Barile, E.C. Barile, K.R. Zavadil, R.G. Nuzzo, A.A. Gewirth, Electrolytic Conditioning of a Magnesium Aluminum Chloride Complex for Reversible Magnesium Deposition, The Journal of Physical Chemistry C, 118 (2014) 27623-27630.
    [32] X. Liu, A. Du, Z. Guo, C. Wang, X. Zhou, J. Zhao, F. Sun, S. Dong, G. Cui, Uneven Stripping Behavior, an Unheeded Killer of Mg Anodes, Adv Mater, 34 (2022) e2201886.
    [33] A. Benmayza, M. Ramanathan, T.S. Arthur, M. Matsui, F. Mizuno, J. Guo, P.-A. Glans, J. Prakash, Effect of electrolytic properties of a magnesium organohaloaluminate electrolyte on magnesium deposition, The Journal of Physical Chemistry C, 117 (2013) 26881-26888.
    [34] J. Shi, J. Zhang, J. Guo, J. Lu, Interfaces in rechargeable magnesium batteries, Nanoscale Horiz, 5 (2020) 1467-1475.
    [35] H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Mg rechargeable batteries: an on-going challenge, Energy & Environmental Science, 6 (2013).
    [36] Y. Cheng, R.M. Stolley, K.S. Han, Y. Shao, B.W. Arey, N.M. Washton, K.T. Mueller, M.L. Helm, V.L. Sprenkle, J. Liu, Highly active electrolytes for rechargeable Mg batteries based on a [Mg 2 (μ-Cl) 2] 2+ cation complex in dimethoxyethane, Physical Chemistry Chemical Physics, 17 (2015) 13307-13314.
    [37] M. Winter, B. Barnett, K. Xu, Before Li ion batteries, Chemical reviews, 118 (2018) 11433-11456.
    [38] R. Attias, B. Dlugatch, O. Blumen, K. Shwartsman, M. Salama, N. Shpigel, D. Sharon, Determination of Average Coulombic Efficiency for Rechargeable Magnesium Metal Anodes in Prospective Electrolyte Solutions, ACS Appl Mater Interfaces, 14 (2022) 30952-30961.
    [39] B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries, Advanced Energy Materials, 8 (2017).
    [40] M.M. Avedesian, H. Baker, ASM specialty handbook: magnesium and magnesium alloys, ASM international, 1999.
    [41] A. Maddegalla, A. Mukherjee, J.A. Blazquez, E. Azaceta, O. Leonet, A.R. Mainar, A. Kovalevsky, D. Sharon, J.F. Martin, D. Sotta, Y. Ein-Eli, D. Aurbach, M. Noked, AZ31 Magnesium Alloy Foils as Thin Anodes for Rechargeable Magnesium Batteries, ChemSusChem, 14 (2021) 4690-4696.
    [42] D. Schloffer, S. Bozorgi, P. Sherstnev, C. Lenardt, B. Gollas, Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries, Journal of Power Sources, 367 (2017) 138-144.
    [43] R. Li, Q. Liu, R. Zhang, Y. Li, Y. Ma, H. Huo, Y. Gao, P. Zuo, J. Wang, G. Yin, Achieving high-energy-density magnesium/sulfur battery via a passivation-free Mg-Li alloy anode, Energy Storage Materials, 50 (2022) 380-386.
    [44] B. Wang, K. Xu, D. Xu, X. Cai, Y. Qiao, L. Sheng, Anisotropic corrosion behavior of hot-rolled Mg-8 wt.% Li alloy, Journal of Materials Science & Technology, 53 (2020) 102-111.
    [45] H. Meerwein, D. Delfs, H. Morschel, Die Polymerisation des Tetrahydrofurans, Angewandte Chemie, 72 (1960) 927-934.
    [46] K. Jüttner, Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces, Electrochimica Acta, 35 (1990) 1501-1508.
    [47] S. Feliu, Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges, Metals, 10 (2020) 1-23.
    [48] V. Shkirskiy, A.D. King, O. Gharbi, P. Volovitch, J.R. Scully, K. Ogle, N. Birbilis, Revisiting the Electrochemical Impedance Spectroscopy of Magnesium with Online Inductively Coupled Plasma Atomic Emission Spectroscopy, ChemPhysChem, 16 (2015) 536-539.
    [49] Z. Shi, M. Liu, A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corrosion science, 52 (2010) 579-588.
    [50] H. Xu, X. Zhang, T. Xie, Z. Li, F. Sun, N. Zhang, H. Chen, Y. Zhu, X. Zou, C. Lu, Li+ assisted fast and stable Mg2+ reversible storage in cobalt sulfide cathodes for high performance magnesium/lithium hybrid-ion batteries, Energy Storage Materials, 46 (2022) 583-593.
    [51] L. Krause, L. Jensen, V. Chevrier, Measurement of Li-ion battery electrolyte stability by electrochemical calorimetry, Journal of The Electrochemical Society, 164 (2017) A889.
    [52] A.L. Wayda, M.Y. Darensbourg, Experimental Organometallic Chemistry: A practicum in synthesis and characterization, ACS Publications, 1987.
    [53] R.J. Errington, Advanced practical inorganic and metalorganic chemistry, CRC press, 1997.
    [54] W.L. Armarego, Purification of laboratory chemicals, Butterworth-Heinemann, 2017.

    QR CODE