研究生: |
程言鼎 Yan-Ding Cheng |
---|---|
論文名稱: |
利用射束阻擋裝置處理小動物錐形電腦斷層影像的散射修正 Scatter correction in animal cone beam computed tomography (CBCT) using a beam stopper device |
指導教授: |
莊克士
Keh-Shih Chuang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 錐形射束電腦斷層掃描 、小動物電腦斷層掃描 、散射修正法 、散射與主射束比值 |
外文關鍵詞: | CBCT, Micro CBCT, scatter correction, SPR |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:在傳統電腦斷層造影中,散射是影響影像品質的一大要素,近年來CBCT大量的被應用,且CBCT的散射量較傳統電腦斷層造影來得大,散射會造成影像的對比度降低、影像像素值低估、雜訊增加、生成杯狀假影,本研究先量測出核研所小動物錐形電腦斷層儀的散射量,再利用射束阻擋裝置處理小動物錐形電腦斷層影像的散射修正,並期望日後可應用在臨床的CBCT。
材料與方法:使用純壓克力假體及鉛擋塊求該系統的SPR,再用對比假體、純壓克力假體及數種BSD預測INER’s Micro CBCT的散射光子分佈,之後再進行CBCT影像修正。BSD的方法,主要是利用 有/無 BSD的兩次投影資料或是單次投影資料預測散射光子分佈,再將散射光子訊號與主射束光子訊號分開,將主射束光子訊號進行重建,即可得到沒有散射光子的CBCT影像。文中除了BSD散射修正法外,尚與Curve Fitting的方法做比較,包括經過散射修正後的散射光子分佈正確性、影像對比度、雜訊、杯狀假影改善程度。
結果與結論:INER’s Micro CBCT的SPR高達37.47%。Point BSD的方法所預測的散射光子分佈較接近真實散射光子分佈,CBCT的影像經過Point BSD方法修正後,影像的對比度最大可增加15%,影像像素值可正確被修正10%以上,杯狀假影可減少約2.5倍,雜訊增加方面與Curve Fitting的方法相比並不會對影像造成多餘負荷。CBCT的影像經BSD散射修正,可有效且正確的被修正,並優於Curve Fitting的方法,若可正確預估T值,可將此方法應用在臨床的CBCT上。
Introduction: Scatter is an important factor to effect CT image quality, especially in CBCT. X-ray scatter reduces image contrast, increases image noise, introduces pixel value inaccuracy and some image artifact. In this study, we use a Beam Stopper Devices (BSD) to correct the scatter of INER’s Micro CBCT images and expect that the method can be apply to the clinical use of CBCT in the future.
Materials and methods: First, We investigate the scatter to primary ratio (SPR) of INER’s Micro CBCT with a cylinder PMMA phantom and different diameter lead foils. The two cylinder phantoms, include a contrast phantom and a PMMA phantom, were used. And we use beam stopper device (BSD) to estimate the scatter of the projection data. By using two projection data, with/without BSD, we can calculate the scatter distribution. And the scatter in the projection data could be removed exactly . Furthermore, we also use the curve fitting method to correct the CBCT images. Some image index, such like contrast index, cup index, normalized standard deviation, and mean pixel value, were evaluated to compare the correction effect between the BSD and curve fitting method.
Results and conclusions: The SPR of INER’s Micro CBCT is up to 37.47%. Point BSD method can correctly estimate real scatter distribution of projection data. After Point BSD corrected, image contrast could increased 15%, pixel value were restored to original value nearly, and cup index were reduced 2.5 times. The added noise from Point BSD method is less than Curve Fitting method. Overall, BSD method is better than Curve Fitting method according to our experiments. When T-values are estimated correctly, the BSD method used in CBCT will be very valuable in the future.
A. L. C. Kwan, J. M. Boone, N. Shah 2005 Evaluation of x-ray scatter properties in a dedicated cone-beam breast CT scanner Med. Phys. 32(9) 2967-2975
C. Badea, L.W. Hedlund, and G.A. Johnson 2004 Micro-CT with respiratory and cardiac gating Med. Phys. 31 (12) 3324-3329
D. A. Jaffray and J. H. Siewerdsen 2000 Cone-beam computed tomography with a flat-panel imager : Initial performance characterization Med. Phys. 27(6) 1311-1323
E. Y Sidky, Y. Zou and X. Pan 2004 Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods Phys. Med. Biol. 49 2293-2303
G. H. Glover 1982 Compton scatter effects in CT reconstructions Med. Phys. 9(6) 860-867
G. Jarry, D. Moseley, D. Jaffray, and F. Verhaegen, 2005 Monte Carlo investigation of scatter contribution to kilovoltage cone-beam computed tomography images Med. Phys. 32(6) 2092
J. A. Sorenson and J. Floch 1985 Scatter rejection by air gap: An empirical model Med. Phys. 12 308-316
J. H. Siewerdsen and D. A. Jaffray 2000 Optimization of x-ray imaging geometry (with specific application to flat-panel cone-beam computed tomography) Med. Phys. 27(8) 1903-1914
J. H. Siewerdsen and D. A. Jaffray 2001 Cone-beam computed tomography with a flat-panel imager: Magnitude and effects of x-ray scatter Med. Phys. 28(2) 220-231
J. H. Siewerdsen, D. J. Moseley and B. Bakhtiar, S. Richard, D. A. Jaffray 2004 The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors Med. Phys. 31(12) 3506-3520
J. H. Siewerdsen, M. J. Daly and B. Bakhtiar, D. J. Moseley, S. Richard, H. Keller, D. A. Jaffray 2006 A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT Med. Phys. 33(1) 187-197
J. J. Sonke, L. Zijp, P. Remeijer,and M. V. Herk 2005 Respiratory correlated cone beam CT Med. Phys. 32(4) 1176-1186
J. M. Boone and J. A. Seibert 1988 Monte Carlo simulation of the scattered radiation distribution in diagnostic radiology Med. Phys. 15 713-720
J. M. Boone and J. A. Seibert 1988 An analytical model of the scattered radiation distribution in diagnostic radiography Med. Phys. 15 721-725
J. R. Vetter and J. E. Holden 1988 Correction for scatter radiation and other background signals in dual-energy computed tomography material thickness measurements Med. Phys. 15(5) 726-731
J. Sijbers and A. Postnov 2004 Reduction of ring artifacts in high resolution micro-CT reconstructions Phys. Med. Biol. 49 N247-N253
J. Wu, K. S. Chuang, C. H. Hsu, M. L. Jan, I. M. Hwang, and T. J. Chen 2005 Scatter correction for 3D PET using beam stoppers combined with dual-energy window acquisition. Phys. Med. Biol. 50 4593-4607
K. S. Chuang, J. Wu, M. L. Jan, S. Chen, and C. H. Hsu 2005 Novel scatter correction for three-dimensional positron emission tomography by use of a beam stopper device Nucl. Instr. Meth. A 551 540-552
L.A. Feldkamp, L.C. Davis, J.W. Kress 1984 Cone-beam reconstruction: Feldkamp algorithm J. Opt. Soc. Am. A 1 612-619
L. Spies, M. Ebert, B. A. Groh, B. M. Hesse, and T. Bortfeld 2001 Correction of scatter in megavoltage cone-beam CT Phys. Med.Biol 46(3) 821-833
M. Endo, T. Tsunoo, N. Nakamori and K. Yoshida 2001 Effect of scattered radiation on image noise in cone beam CT Med. Phys. 28(4) 469-474
P. C. Johns and M. Yaffe 1982 Scatter radiation in fan beam imaging systems Med. Phys. 9 231-239
P. M. Joseph and R. D. Spital 1982 The effects of scatter in x-ray computed tomography Med. Phys. 9(4) 464-472
R. Ning and X. Tang, D. Conover 2004 X-ray scatter correction algorithm for cone beam CT imaging Med. Phys. 31(5) 1195-1202
S. R. Cherry, S. R. Meikle, E. J.Hoffman 1993 Correction and characterization of scattered events in three dimensional PET using scanners with retractable septa. J Nucl Med 34 671-678.
U. Neitzel 1992 Grids or air gaps for scatter reduction in digital radiography : A model calculation Med. Phys. 19 475-481
蔡惠予, 電腦斷層的輻射劑量研究 2003 國立清華大學原子科學系博士論文