簡易檢索 / 詳目顯示

研究生: 羅元駿
Yuan-Chun Lo
論文名稱: 鎢奈米點非揮發性記憶體經電漿處理之元件應用與研究
Study of Plasma Treatment on Tungsten Nano-Crystal for Non-Volatile Memory Device Application
指導教授: 楊士禮
Sidney S. Yang
張鼎張
Ting-Chang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 103
中文關鍵詞: 鎢奈米點記憶體電漿
外文關鍵詞: tungsten nanocrystal, memory, plasma
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎢奈米點非揮發性記憶體經電漿處理之
    元件其製作及研究

    研究生:羅元駿 指導教授:楊士禮 博士
    張鼎張 博士
    國立清華大學
    光電工程研究所碩士班

    摘要
    傳統的非揮發性記憶體是利用複晶矽浮停閘(floating gate)作為載子儲存的單元,而在元件尺寸持續微縮下,此結構將面臨一些瓶頸。為了克服尺寸極限,近年來衍生出之奈米晶體非揮發性記憶體,即利用半導體或金屬奈米點作為電荷儲存的單元,可以減少穿隧氧化層的厚度,而不損失可靠性,進而降低操作電壓及操作速度增快。
    金屬奈米點勝過於其他相關材料的優點,包含更高的能態密度,對通道層有更高的耦合,更佳的尺寸設計控制和更自由的功函數搭配選擇來達到最佳的電性。然而,鎢奈米點在所有金屬奈米點中最讓人感興趣,鎢有許多吸引人的優點,例如極高的熔點,很高的製程溫度使元件有優越的熱穩定性,現今超大型積體電路技術應用廣泛,使鎢奈米點非揮發性記憶體在工業上的實際可能生產。
    近年來發展了許多方法來形成奈米點,一般而言,大多數的方法都需要長時間高溫的熱製程,這個步驟會影響現階段半導體製程中的熱預算和產能。而電漿處理的方法已經廣泛的應用在多晶矽的薄膜電晶體(poly-Si TFT)製程中,用來減低介面缺陷,進而改善元件的特性和提高其可靠度。因此,在本文中,一個簡單、低溫的電漿處理方法將用來改善金屬奈米點,並應用於非揮發性記憶體中。
    在此論文中,將從鎢(W)金屬奈米點的製作方式出發,首先在穿隧氧化層上方沉積矽化鎢(WSi2)薄膜,當試片經過快速熱退火後,金屬鎢成分會向下在靠近穿隧氧化層附近成核析出形成鎢奈米點,同時,成份矽則氧化成二氧化矽而將鎢奈米點包圍,使成為各自獨立的儲存單元。之後,再經由不同電漿的處理,來研究鎢奈米點記憶體在不同電漿處理後的記憶效應以及可靠度分析。由電性分析得知,含有Si-H鍵結的電漿,在處理後可以有效的修補元件的介面缺陷,使鎢奈米點記憶體有更好的儲存能力。而含有Si-O鍵結的電漿,可提供充足的氧,來氧化因為快速熱退火氧化不完全的部分,進而提升奈米點記憶體的元件特性。
    最後,我們將針對單元和多元的電漿氣體,對鎢奈米點記憶體的記憶窗口以及電性加以研究。由以上結果,我們將可以得到,不同的電漿處理,可提供傳統的鎢金屬奈米點記憶體不同程度上的貢獻。


    Contents Chinese Abstract ----------------------------------------- I English Abstract --------------------------------------- III Acknowledgement ------------------------------------------ V Contents ------------------------------------------------ VI Table Captions ---------------------------------------- VIII Figure Captions ----------------------------------------- IX Chapter 1 Introduction 1.1 General Background ------------------------- 1 1.1.1 SONOS Nonvolatile Memory Devices------- 2 1.1.2 Nanocrystal Nonvolatile Memory Devices--3 1.2 Motivation --------------------------------- 5 1.3 Organization of This Thesis ---------------- 6 Chapter 2 Basic Principle of Nonvolatile Memory 2.1 Introduction ------------------------------ 12 2.2 Basic Program/Erase Mechanisms ------------ 14 2.2.1 Tunneling Injection ------------------ 14 2.2.2 Hot-Election Injection --------------- 16 2.2.3 Band to Band Assisted Hole Injection --16 2.3 Basic Reliability of Nonvolatile Memory --- 17 2.3.1 Retention ---------------------------- 17 2.3.2 Endurance ---------------------------- 17 2.4 Basic Physical Characteristic of Nanocrystals NVMs ------------------------- 18 2.4.1 Quantum Confinement Effect ----------- 18 2.4.2 Coulomb Blockade Effect -------------- 18 Chapter 3 Tungsten Nano-dots NVMs 3.1 Motivation ------------------------------------------ 25 3.2 Process Flow of the Tungsten Nano-dots NVMs --------- 26 3.3 Results and Discussion ------------------------------ 27 3.4 Summary --------------------------------------------- 32 Chapter 4 Application of NH3 Plasma on Tungsten Nano-dots NVMs 4.1 Introduction ---------------------------------------- 41 4.2 Experiment Procedures ------------------------------- 42 4.3 Results and Discussion ------------------------------ 43 4.4 Summary --------------------------------------------- 47 Chapter 5 Application of N2O Plasma on Tungsten Nano-dots NVMs 5.1 Introduction ---------------------------------------- 62 5.2 Experiment Procedures ------------------------------- 63 5.3 Results and Discussion ------------------------------ 64 5.3.1 N2O plasma on Tungsten Nano-dots NVMs ------------- 64 5.3.2 O2 plasma on Tungsten Nano-dots NVMs -------------- 66 5.3.3 N2 plasma on Tungsten Nano-dots NVMs -------------- 69 5.4 Summary --------------------------------------------- 70 Chapter 6 Conclusions and Future work 6.1 Conclusions ----------------------------------------- 92 6.2 Future work ----------------------------------------- 93 References ---------------------------------------------- 95 Vitae -------------------------------------------------- 103

    References

    Chapter 1
    [1.1] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, p. 504 (1981)
    [1.2] D. Kahng, S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech. Journal., vol. 46, pp. 1288 (1967)
    [1.3] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, vol. 1, pp. 72-77 (2002)
    [1.4] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, pp. 52 (1996)
    [1.5] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE Circuits & Devices Magazine., vol. 16, pp.22-31 (2000)
    [1.6] H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, pp. 157 (1987)
    [1.7] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 521-524 (1995)
    [1.8] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Letters., vol. 18, pp. 278-280 (1997)
    [1.9] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-x Gex”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 115-118 (1998)
    [1.10] Y. Yang, A. Purwar, and M. H. White, “Reliability considerations in scaled SONOS nonvolatile memory devices”, Solid-State Electronics, vol. 43, pp. 2025-2032 (1999)
    [1.11] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell, and R. E. Oleksiak, “The variable threshold transistor, a new electrically alterable nondestructive read-only storage device”, presented at the Internat’l Electron Devices Meeting, 1967
    [1.12] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and Doug Buchanan, IEDM Tech. Dig., p.521 (1995)
    [1.13] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Letters., vol. 18, pp. 278-280 (1997)
    [1.14] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transactions on Nanotechnology., vol. 1, no. 1, pp. 72-77 (2002)
    [1.15] The International Technology Roadmap for Semiconductors (ITRS), Tables 28a, 28b (1999)
    [1.16] S.P. Murarka, “Silicides for VLSI applications”, Academic Press, INC., London, 1983, pp3-4

    Chapter 2
    [2.1] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells -An overview”, Proceedings of The IEEE, vol. 85, pp. 1248-1271 (1997)
    [2.2] M. Woods, “Nonvolatile Semiconductor Memories: Technologies, Design, and Application”, C. Hu, Ed. New York: IEEE Press, ch. 3, pp.59 (1991)
    [2.3] S. M. Sze, J. Appl. Phys., vol. 38, pp. 2951 (1967)
    [2.4] Min She, “Semiconductor Flash Memory Scaling”
    [2.5] Marvin H. White, Yang (Larry) Yang, Ansha Purwar, and Margaret L. French, “A Low Voltage SONOS Nonvolatile Semiconductor Memory Technology”, IEEE, vol. 20, no. 2 (1997)
    [2.6] J. Bu, M. H. White, “Design considerations in scaled. SONOS nonvolatile memory devices”, Solid-State Electronics., vol. 45, pp. 113-120 (2001)
    [2.7] M. L. French, and M. H. White, ”Scaling of multidielectric nonvolatile SONOS memory structures”, Solid-State Electron., vol. 37, pp.1913-1923 (1995)
    [2.8] M. L. French, C. Y. Chen, H. Sathianathan, and M. H. White, ”Design and scaling of a SONOS multidielectric device for nonvolatile memory applications”, IEEE Trans. Comp. Pack and Manu Tech part A., vol. 17, pp. 390-397 (1994)
    [2.9] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, ”A high capacitive-coupling ratio (HiCR) cell for 3V-only 64Mb and future flash memories”, IEDM Tech. Dig., pp.19-22 (1993)
    [2.10] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, ”Metal nanocrystal memories- part I: device design and fabrication”, IEEE Transactions of Electron Devices., vol. 49, pp. 1606-1613 (2002)
    [2.11] J. L. Moll, Physics of Semiconductors, New York: McGraw-Hill (1964)
    [2.12] M. Lezlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2”, J. Appl. Phys., vol. 40, no. 1, pp. 278-283 (1969)
    [2.13] C. Sevensson and I. Lundstrom, “Trap-assisted charge injection in MNOS structures”, J. Appl. Phys., vol. 44, pp. 4657-4663 (1973)
    [2.14] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFET’s”, IEEE J. Solid-State Circuits, vol. 14, pp. 442-455 (1979)
    [2.15] K. T. San, C. Kaya, T. P. Ma, “Effects of erase source bias on flash EPROM device reliability”, Electron Devices, IEEE Transactions, vol. 42, issue 1, pp. 150-159 (1995)
    [2.16] S. S. Chung, Cherng-Ming Yih, Shui-Ming Cheng, and Mong-Song Liang, “A New Technique for Hot Carrier Reliability Evaluations of Flash Memory Cell after Long-Term Program/Erase Cycles”, IEEE Transactions of Electron Devices, vol. 46, no. 9 (1999)
    [2.17] Suk-Kang Sung, I1-Han Park, Chang-Ju Lee, Yong-Kyu Lee, Jong-Duk Lee, Byung-Gook Park, Soo-Doo Chae, and Chung-Woo Kim, ”Fabrication and Program/Erase Characteristics of 30-nm SONOS Nonvolatile Memory Devices”, IEEE Transactions on nanotechnology, vol. 2, no. 4 (2003)
    [2.18] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of the IEEE, vol. 85, pp. 1248 (1997)
    [2.19] J. De Blauwe, M. Ostraat, M. Green, G. Weber, T. Sorsch, A. Kerber, F. Klemens, R. Cirelli, E. Ferry, J. L. Grazul, F. Baumann, Y. Kim, W. Mansfield, J. Bude, J. T. C. Lee, S. J. Hillenius, R. C. Flagan, and H. A. Atwater, “A novel, aerosol-nanocrystal floating-gate device for nonvolatile memory applications”, in IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., pp. 683–686 (2000)
    [2.20] H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nanocrystal memory”, IEEE Trans. Electron Devices, vol. 43, pp. 1553–1558 (1996)
    [2.21] Y. C. King, T. J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-xGex,” IEEE Trans. Electron Devices, vol. 48, pp. 696–700 (2001)
    [2.22] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo,”Quantum confinement in germanium nanocrystals”, Applied Physics Letters., vol. 77, pp. 1182-1184 (2000)
    [2.23] K. K. Likharev, “Riding the crest of a new wave in memory NOVORAM”, IEEE Circuits & Devices Magazine, vol. 16, no. 4, pp. 16-21 (2000)
    [2.24] J. J. Lee, X. Wang, W. Bai, N. Lu, J. Lni, D. L. Kwong, “Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectric”, Symposium on VLSI Technology, Digest of Technical Papers, pp. 33-34 (2003)

    Chapter 3
    [3.1] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication“, IEEE Tran. Electron Devices, vol. 49, pp. 1606 (2002)
    [3.2] S. K. Samanta, W. J. Yoo, G. Samudra, E. S. Tok, L. K. Bera, and N. Balasubramanian, “Tungsten nanocrystals embedded in high-k materials for memory application”, Applied Physics Letters., vol. 87, Art. no. 113110 (2005)
    [3.3] G. J. Huang, L. J. Chen, “Investigation of the oxidation kinetics of NiSi2 on (111) Si by transmission electron microscopy”, J. Appt. Phys., vol. 74, pp. 1001 (1993)
    [3.4] C. H. Chen, T. C. Chang, I. H. Liao, P. B. Xi, Joe Hsieh, Jason Chen, and Tensor Huang, S. M. Sze, and U. S. Chen and J. R. Chen, “Tungsten oxide/tungsten nanocrystals for nonvolatile memory devices”, Applied Physics Letters., vol. 92, 013114 (2008)
    [3.5] Jin-Kook Yoon, Kyung-Whan Lee, Sung-Jae Chung, In-Jin Shon, Jung-Mann Doh, and Gyeung-Ho Kim, “Growth kinetics and oxidation behavior of WSi2 coating formed by chemical vapor deposition of Si on W substrate”, Journal of Alloys and Compounds, vol. 420, pp. 199-206 (2006)
    [3.6] James D. Plummer, Micharl D. Deal, Peter B. Griffin, “Silicon VLSI Technology: Fundamental, Practice and Modeling”, Prentice Hall, 2003
    [3.7] www.lasurface.com/database, ref. 111
    [3.8] www.lasurface.com/database, ref. 13, 111, 150
    [3.9] M. KATON and T.TAKBDA, “Chemical State Analysis of Tungsten and Tungsten Oxides Using an Electron Probe Microanalyzer”, J. J. Appl. Phys, Vol. 43, No. 10, 2004, pp. 7297-7295
    [3.10] H. QIU and Y. F. LU, “Scanning Tunneling Microscopy and Atomic Force Microscopy Studies of Laser Irradiation of Amorpgous WO3 Thin Film”, J. J. Appl. Phys, Vol. 39, 2000, pp. 5889-5893
    [3.11] S. P. Murarka, “Silicides for VLSI applications”, Academic Press, INC., London, 1983
    [3.12] Robert Beyers, “Thermodynamic consideration in refractory metal-silicon-oxygen system”, J. Appl. Phys., 56 (1), 1 July 1984, pp. 147-152
    [3.13] S. Zirinsky, W. Hammer, F d’Herurle, and J. Baglin, “Oxidation mechanism in WSi2 thin films”, Appl. Phys. Letter., 33 (1), 1 July 1978, pp. 76-78
    [3.14] Yang (Larr) Yang, Marvin H. White, “Charge retention of scaled SONOS nonvolatile memory devices at elevated temperatures”, Solid-State Electronics, vol. 44, pp.949-958 (2000)
    [3.15] C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991)

    Chapter 4
    [4.1] Jean-Jong Kim, Hyung-Ho Park*, Sang-Hoon Hyun, “The evolution of microstructure and surface bonding in SiO2 aerogel film after plasma treatment using O, N, and H gases”, Thin Solid Films, vol. 384, 2001, pp. 236-242
    [4.2] E. Taglauer, Appl. Phys. A51, 1990, pp.238
    [4.3] W. Petasch, B. Kegel, H. Schmid, K. Lendenmann, H.U. Keller, Surf. Coat. Technol., vol. 97, 1997, pp.176
    [4.4] T. I. Kamins and P. J. Marcoux: IEEE Electron Device Lett. 1 (1980) 159
    [4.5] T. Takeshita, T. Unnagami and O. Kogure: Jpn. J. Appl. Phys. 27 (1988) L2118
    [4.6] H. N. Chen, C. L. Lee and T. F. Lei: IEEE Trans. Electron Devices 40 (1993) 2301
    [4.7] J. D. Bernstein, S. Qin, C. Chan and T.-J. King: IEEE Electron Device Lett. 16 (1995) 421
    [4.8] S. Alexandrova, S. Kaschieva, E. Halova, E. Valcheva, A. Szekeres, “Sensitivity of hydrogen plasma-treated SiO2/Si structures to high-energy electron irradiation”, Vacuum, vol. 69, 2003, pp. 103-106
    [4.9] C. K. Yang, T. F. Lei and C. L. Lee: IEEE Electron Device Lett. 15 (1994) 389
    [4.10] D.-S. Choi, S.-H. Hur, G.-Y. Yang, C.-H. Han and C.-K. Kim: Jpn. J. Appl. Phys. 34 (1995) 882
    [4.11] F.-S. Wang, M.-J. Tsai and H.-C. Cheng: IEEE Electron Device Lett. 16 (1995) 503
    [4.12] Yeong-Shyang Lee, Hsiao-Yi Lin, Tan-Fu Lei, Tiao-Yuan Hung, T.-C. Chang and Chun-Yen Chang, “Comparison of N2 and NH3 plasma passivation effects on polycrystalline silicon thin-film transistors”, Jpn. J. Appl. Phys., vol. 37, 1998, pp. 3900-3903
    [4.13] T. Suzuki, M. Muto, M. Hara, K. Yamabe, T. Hattori, “ Depth profiling Si-SiO2 interface structure”, Jpn. J. Appl. Phys., vol. 25, 1986, pp. 544-551
    [4.14] A. Ikeda, T. Sadou, H. Nagashima, K. Kouno, N. Yoshikawa, K. Tshukamoto, Y. Kuroki, “Electronic properties of MOS capacitor exposed to inductively coupled hydrogen plasma”, Thin Solid Films, vol. 345, 1999, pp. 172-177
    [4.15] K. Sugiyama, T. Igarashi, K. Moriki, et al., ”Silicon-hydrogen bonds in silicon native oxide formed during wet chemical treatments”, Jpn. J. Appl. Phys., vol. 29, 1990, pp. L2401-L2404
    [4.16] T. Hattori, T. Igarashi, M. Ohi and H. Yamagishi, “Chemical bonds at and near the SiO2/Si interface” Jpn. J. Appl. Phys., vol. 28, 1989, pp. L1436-L1438

    Chapter 5
    [5.1] W. Ting, G. Q. Lo, J. Ahn, T. Y. Chu, and D. L. Kwong, IEEE Electron Device Lett., EDL-12, 416 (1991)
    [5.2] G. Q. Lo, W. Ting, J. Ahn, and D. L. Kwong, IEEE Electron Device Lett., EDL-13, 111 (1992)
    [5.3] J. Ahn, W. Ting, T. Chu, S. N. Lin, and D. L. Kwong, J. Electrochem, Soc., 138, L39 (1991)
    [5.4] M. Bhat, H. H. Jia, and D. L. Kwong, “Growth kinetics of oxides during furnace oxidation of Si in N2O ambient”, J. Appl. Phys., 78 (4), 15 August 1995
    [5.5] N. S. Saks, D. I. Ma and W. B. Fower: Appl. Phys. Lett., 67 (1995) 374
    [5.6] M. L. Green, D. Brasen, K. W. Evans-Lutterodt, L. C. Feldman, K. Krisch, W. Lennard, L. Manchanda, H.-T. Tang and M.-T. Tang: Appl. Phys. Lett., 65 (1994) 848
    [5.7] K. L. Han, D. Wristers, T. S. Chen, C. Lin, K. Chen, J. Fulford and D. L. Kwong: 1995 SDDM PC1-2 (1995) p. 261
    [5.8] D. R. Lee, G. Lucovsky, M. R. Denker and C. Magee: J. Vac. Sci. Technol. A13 (1995) 1778
    [5.9] Kwangok Koh, Hiro Niimi, Gerald Lucovsky and Martin. L. Green, “Controlled Nitrogen Incorporation at Si-SiO2 Interfaces by Remote Plasma-Assisted Processing”, Jpn. J. Appl. Phys., Vol. 37, 1998, pp. 709-714
    [5.10] Ying-Chia CHEN, Ming-Zang YANG, I-Chung TUNG, Mengpang CHEN, Ming-Shiann FENG, Huang-Chung CHENG and Chun-Yen CHANG, “Effects of O2- and N2O-Plasma Treatments on Properties of Plasma-Enhanced-Chemical-Vapor-Deposition Tetraethylorthosilicate Oxide”, Jpn. J. Appl. Phys., Vol. 38, 1999, pp. 4226–4232
    [5.11] M. KATOH and T. TAKBDA, “Chemical State Analysis of Tungsten and Tungsten Oxides Using an Electron Probe Microanalyzer”, J. J. Appl. Phys., Vol. 43, No. 10, 2004, pp. 7297-7295
    [5.12] H. QIU and Y. F. LU, “Scanning Tunneling Microscopy and Atomic Force Microscopy Studied of Laser Irradiation of Amorpgous WO3 Thin Films”, J. J. Appl. Phys., Vol. 39, 2000, pp. 5889-5893
    [5.13] L. G. Piper and W. T. Rawlins, J. Chem. Phys. 90, 320 (1986)
    [5.14] T. A. Cleland and D. W. Hess, J. Electrochem. Soc. 136, 3103 (1989)
    [5.15] L. E. Kline, W. D. Partlow, R. M. Young, R. R. Mitchell, and T. V. Congedo, IEEE Trans. Plasma Sci. 19, 278 (1991)
    [5.16] M. J. Kushner, J. Appl. Phys. 74, 6538 (1993)
    [5.17] R. Wolf and K. Wandel, Surf. Coat. Technol. 74-75, 522 (1995)
    [5.18] Bradley C. Smith, Amit Khandelwal, and H. Henry Lamb, “Ar/N2O remote plasma-assisted oxidation of Si(100): Plasma chemistry, growth kinetics, and interfacial reactions”, J. Vac. Sci. Technol. B 18(3), May/Jun 2000

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE