簡易檢索 / 詳目顯示

研究生: 陳 怡
Chen, I
論文名稱: 利用幾何優化實現高度增強拉曼訊號之三維UTLC-SERS多功能快速檢測晶片
Rapid Biochemical Screening with Highly Intensified Raman Signal by using Geometry-Optimized 3-D SERS-UTLC Multifunctional Chip
指導教授: 嚴大任
Yen, Ta-Jen
口試委員: 鄭兆珉
Zheng, Zhao-Min
吳志明
Wu, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 88
中文關鍵詞: 薄層層析法表面強化拉曼矽奈米線陣列
外文關鍵詞: Thin-Layer Chromatography, Surface-Enhanced-Raman-Spectroscopy, Silicon-Nanowire-Array
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從2007年的瘦肉精事件、2008年的三聚氰胺毒奶粉事件、2011年的塑化劑事件,到近年來層出不窮的農藥超標事件,食品安全問題已經成為台灣的重大議題之一。雖然目前已經發展出許多高精準度的分析技術如層析法、質譜法和免疫蛋白測定法等,然而,精密的檢驗方法同時也存在著許多弊端:除了本身的檢測流程複雜之外,需要較長的分析時間,費用更是高昂,這些缺點大大限制了此檢測技術在日常上的應用。因此要如何找出既具有高靈敏性、成本也較低廉的快速檢測方法,成為目前甚被關注的重要議題之一。
    在眾多檢測分析方法中,拉曼散射光譜是一種強而有力的分析技術,他能提供分子結構上的資訊並應用於快速篩选以及分子檢測上。然而,拉曼訊號的強度並不高,複雜的環境背景值會減弱甚至無法辨別目標待測物的拉曼訊號。因此,發展出一個簡單的檢測樣品前處理技術搭配高靈敏的拉曼散射光譜成了近年來研究的關注議題。在本論文中,我們優化了一種低成本且製程簡單的多功能表面增強拉曼檢測晶片,此晶片由先前的研究團隊提出,其同時擁有超薄層液相層析法以及表面增強拉曼效應的功能,藉由複雜混合樣品中個別分子對於固相晶片和液相溶液間親和力的差異,能夠將目標待測物自混合物中分離出來,進而大幅提升其信躁比。
    此多功能三維表面增強拉曼檢測晶片主要利用化學濕式刻蝕法形成的矽奈米線和銀奈米顆粒裝飾而成,其後以SiNWs@Ag來稱呼此基板。SiNWs@Ag基板可以在銀奈米顆粒之間透過表面電漿子共振的方式在特定區域形成電磁訊號增強的熱點(hotspot),以此來增強目標待測物的拉曼訊號。此外,矽奈米線提供高表面積,使其具備了分離混合物的功能。和先前的研究相比,我們進一步利用氫氧化鉀的蝕刻拓寬矽奈米線的間距,使得銀奈米顆粒能夠貼附於奈米線之間及更深的區域,形成三維表面增強拉曼的結構,達到更好的表面增強拉曼效應。
    在此研究當中,我們首先確立奈米線的各項製造參數,包括奈米線生成速率及氫氧化鉀的蝕刻速率。接下來,製備出包括奈米線長度和奈米線間距等不同幾何形狀的基板,並利用不同顏色的染料證明其具備層析功能,以及探討基板幾何形狀對表面增強拉曼效應的影響。因此,藉由調整SERS基板幾何結構和金屬奈米顆粒之間的距離,我們可以調整表面增強拉曼效應的強度,使得晶片效能達到最佳化。本實驗結果顯示,和原始的基板相比,3微米長度和448奈米寬間距的最佳化奈米線陣列結構能夠有效將拉曼訊號提升近102倍。並且透過將加保利農藥從果汁中分離檢驗的實驗,證實了此晶片能應用於實際的檢測,為生醫感測等領域提供了更好更實際的應用選擇。


    Nowadays, food-additive crisis has become a serious safety issue in Taiwan. Several disconcerting crises including Melamine additive in milk, Ractopamine additive in food animals, and Malachite green additive in farmed fish have caused highly concerned in recent years. However, a simple and convenient method is lacked to identify these toxic chemical composites. Although the laboratory analytic detection techniques including high-performance liquid chromatography(HPLC), liquid chromatography/mass spectroscopy (LC/MS) and immune-assays can obtain a robust analytic result, it accompanies several insufficiencies such as high-cost, complexity, and long detection and analysis time, which limit its application in our daily usage. Therefore, developing a low cost and high-performance analytic platform for biochemical applications is a must to solve abovementioned issues.
    In this research, we optimized a low cost, easily fabricated SERS/UTLC multifunctional chip, which is proposed from the previous research team. Such chip implements the functions of both surface-enhanced Raman scattering (SERS) and ultra-thin liquid chromatography (UTLC) to separate the target analyte from the mixture and also detected by the Raman spectroscopy with high signal/noise ratio at the same time.
    The optimized 3D-SERS/UTLC multifunctional chip composed of silicon nanowires decorated with silver nanoparticles is fabricated by a simple chemical wet etching process, thereafter depicted as SiNWs@Ag. Silver nanoparticles provide abundant electromagnetic hotspots among silver nanoparticles to enhance Raman signals of a target through localized surface Plasmon resonance (LSPR). Furthermore, the SiNWs offer a high surface to volume ratio to present the function of liquid chromatography. Comparing to the previous work, the interspace of SiNWs are further enlarged though KOH etching process, therefore allow silver nanoparticles to deposit not only on top of the nanowires but also between the nanowires, forming a 3-dimension SERS structure. Consequently, the Raman signal of the targets can be dramatically further enhanced in the Raman spectrum.
    Follow the pervious study, our work is to discuss the influence of the SiNWs@Ag’s geometry to the Raman signal enhancement and further improve the performance of the origin SERS/UTLC multifunctional chip. In this study, we first determined the fabrication parameters of the SiNWs@Ag chip. Different geometries of substrates including the lengths of the SiNWs and interspaces between the SiNWs are fabricated and examined utilizing dyes to establish the influence of the substrate geometries to the Raman enhancement. According to the result, the optimized 3D-UTLC/SERS chip with 3um length and 448nm interspace of the SiNWs reveals a nearly 100 times larger Raman signal than the origin substrate. Moreover, the mixture of two dyes are separated to prove the functionality of UTLC. Finally, the detection of pesticide Carbaryl from a juice mixture is demonstrated for practical applications. As a result, by integrating a simple fabrication process and low-cost 3D-SERS/UTLC multifunctional chip, a high biochemical sensing chip for rapid screening is achieved in this work.

    摘要............................................................I Abstract......................................................III Acknowledgements................................................V List of Figures................................................VI List of tables.................................................XV Content.......................................................XVI Chapter 1. Introduction.........................................1 Chapter 2. Literature Review....................................3 2.1 Raman Spectroscopy......................................3 2.1.1 Raman Scattering........................................3 2.1.2 Surface-Enhanced Raman Scattering(SERS).................5 2.1.3 SERS Substrates and their Applications..................7 2.2 Liquid Chromatography..................................11 2.2.1 Thin Layer Liquid Chromatography(TLC)..................11 2.2.2 Ultra-Thin Layer Liquid Chromatography(UTLC)...........16 2.3 Combination of SERS and ULTC and their Applications....21 2.4 Motivation.............................................27 Chapter 3. Design of Experiment ...............................29 3.1 Experiment Process Flow Diagram........................29 3.2 Substrate Fabrication..................................30 3.2.1 Metal Associated with Chemical Etching(MaCE)...........31 3.2.2 Interspaces of Silicon Nanowires Regulation............35 3.2.3 Silver(Ag) Reduction Reaction..........................36 3.3 Liquid Chromatography..................................38 3.3.1 Analyte Preparation....................................38 3.3.2 Chromatography Development.............................40 3.4 Raman Measurement......................................42 3.5 Characterization of the Multifunctional Chip...........43 3.5.1 Reflectance Property of the Substrates.................43 3.5.2 Elemental Analysis.....................................43 Chapter 4. Results and Discussion..............................44 4.1 Determination of fabrication parameter.................44 4.1.1 Silicon nanowires growth rate determination............44 4.1.2 Relationship between Interspaces of SiNW and KOH Etching ...............................................................46 4.1.3 Fabrication of designed SiNWs substrates...............48 4.1.4 Reflectance Study......................................51 4.2 Silver Nanoparticle Deposition.........................55 4.2.1 Influence of Nanostructured Geometry to the Ag Deposition Distribution...................................................55 4.2.2 Comparison of the Modified Ag Prescription.............57 4.2.3 Elemental Analysis Result..............................59 4.2.4 Structure Simulation...................................61 4.3 Thin Layer Liquid Chromatography.......................63 4.3.1 Appearance of Dye Separation...........................63 4.3.2 Raman Measurement Confirmation.........................64 4.3.3 Liquid Chromatography Comparison.......................67 4.4 Raman measurement result...............................69 4.4.1 Raman measurement comparison...........................69 4.4.2 Improvement of the modified Ag deposition..............72 4.5 Practical Application- Pesticide Detection.............73 4.5.1 Carbaryl Mixture in Juice Pretreatment.................73 4.5.2 Carbaryl Mixture Separation............................75 Chapter 5. Conclusions.........................................78 Reference......................................................81

    [1] N. Colthup, Introduction to Infrared and Raman Spectroscopy. Elsevier, 2012.
    [2] John M. Chalmers, Infrared and Raman Spectroscopy in Forensic Science. John Wiley & Sons, 2012.
    [3] E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach. John Wiley & Sons, 2013.
    [4] L. Yang, P. Li, and J. Liu, “Progress in multifunctional surface-enhanced Raman scattering substrate for detection,” RSC Adv., vol. 4, no. 91, pp. 49635–49646, Oct. 2014.
    [5] B. N. J. Persson, “On the theory of surface-enhanced Raman scattering,” Chem. Phys. Lett., vol. 82, no. 3, pp. 561–565, Sep. 1981.
    [6] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter, vol. 14, no. 18, p. R597, 2002.
    [7] C. S. S. R. Kumar, Ed., Raman Spectroscopy for Nanomaterials Characterization. Berlin Heidelberg: Springer-Verlag, 2012.
    [8] M. Jackson and H. H. Mantsch, “The use and misuse of FTIR spectroscopy in the determination of protein structure,” Crit. Rev. Biochem. Mol. Biol., vol. 30, no. 2, pp. 95–120, 1995.
    [9] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett., vol. 26, no. 2, pp. 163–166, May 1974.
    [10] D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem., vol. 84, no. 1, pp. 1–20, Nov. 1977.
    [11] M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc., vol. 99, no. 15, pp. 5215–5217, Jun. 1977.
    [12] M. Fan, G. F. S. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta, vol. 693, no. 1, pp. 7–25, May 2011.
    [13] “Focusing nanoplasmonics,” Journal Nano Science and Technology, 14-Dec-2015.
    [14] A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev., vol. 27, no. 4, pp. 241–250, Jan. 1998.
    [15] J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys., vol. 84, no. 8, pp. 4174–4180, Apr. 1986.
    [16] Theory of First Layer and Single Molecule Surface Enhanced Raman Scattering (SERS) - Otto - 2001 - physica status solidi (a) - Wiley Online Library. John Wiley & Sons, 2001.
    [17] B. Pettinger, U. Wenning, and H. Wetzel, “Surface plasmon enhanced Raman scattering frequency and angular resonance of Raman scattered light from pyridine on Au, Ag and Cu electrodes,” Surf. Sci., vol. 101, no. 1, pp. 409–416, Dec. 1980.
    [18] R. F. Aroca, R. A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, and J. V. Garcia-Ramos, “Surface-enhanced Raman scattering on colloidal nanostructures,” Adv. Colloid Interface Sci., vol. 116, no. 1–3, pp. 45–61, Nov. 2005.
    [19] N. P. W. Pieczonka and R. F. Aroca, “Inherent complexities of trace detection by surface-enhanced Raman scattering,” Chemphyschem Eur. J. Chem. Phys. Phys. Chem., vol. 6, no. 12, pp. 2473–2484, Dec. 2005.
    [20] R. G. Freeman et al., “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates,” Science, vol. 267, no. 5204, pp. 1629–1632, Mar. 1995.
    [21] G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem., vol. 382, no. 8, pp. 1751–1770, Aug. 2005.
    [22] M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B Chem., vol. 51, no. 1, pp. 285–291, Aug. 1998.
    [23] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography:  A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B, vol. 105, no. 24, pp. 5599–5611, Jun. 2001.
    [24] Y. Liu, J. Fan, Y.-P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett., vol. 89, no. 17, p. 173134, Oct. 2006.
    [25] Q. Yu et al., “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology, vol. 21, no. 35, p. 355301, 2010.
    [26] H. H. Strain and J. Sherma, “M. Tswett: ‘Adsorption analysis and chromatographic methods: Application to the chemistry of chlorophylls,’” J. Chem. Educ., vol. 44, no. 4, p. 238, Apr. 1967.
    [27] J. Sherma and B. Fried, Handbook of Thin-Layer Chromatography. CRC Press, 2003.
    [28] J. Sherma, “Review of advances in the thin layer chromatography of pesticides: 2012-2014,” J. Environ. Sci. Health B, vol. 50, no. 5, pp. 301–316, 2015.
    [29] J. Chen, J. Abell, Y. Huang, and Y. Zhao, “Ultra-thin layer chromatography and surface enhanced Raman spectroscopy on silver nanorod array substrates prepared by oblique angle deposition,” in Advanced Environmental, Chemical, and Biological Sensing Technologies IX, 2012, vol. 8366, p. 836605.
    [30] C. L. F. Meyers and D. J. Meyers, “Thin-Layer Chromatography,” Curr. Protoc. Nucleic Acid Chem., vol. 34, no. 1, p. A.3D.1-A.3D.13.
    [31] P. S. Variyar, S. Chatterjee, and A. Sharma, “Fundamentals and Theory of HPTLC-Based Separation,” High-Perform. Thin-Layer Chromatogr. HPTLC, pp. 27–39.
    [32] G. Morlock and W. Schwack, “The contribution of planar chromatography to food analysis,” JPC - J. Planar Chromatogr. - Mod. TLC, vol. 20, no. 6, pp. 399–406, Dec. 2007.
    [33] T. B. Kirchner, N. A. Hatab, N. V. Lavrik, and M. J. Sepaniak, “Highly Ordered Silicon Pillar Arrays As Platforms for Planar Chromatography,” Anal. Chem., vol. 85, no. 24, pp. 11802–11808, Dec. 2013.
    [34] M. Tsionsky, A. Vanger, and O. Lev, “Macroporous thin films for planar chromatography,” J. Sol-Gel Sci. Technol., vol. 2, no. 1–3, pp. 595–599, Jan. 1994.
    [35] F. Costantini et al., “A New Nanostructured Stationary Phase for Ultra-Thin Layer Chromatography: A Brush-Gel Polymer Film,” Nanosci. Nanotechnol. Lett., vol. 5, no. 11, pp. 1155-1163(9), Nov. 2013.
    [36] H. Hauck, O. Bund, W. Fischer, and M. Schulz, “Ultra-thin layer chromatography (UTLC) — A new dimension in thin-layer chromatography,” JPC - J. Planar Chromatogr. - Mod. TLC, Mar. 2007.
    [37] H. E. Hauck and M. Schulz, “Ultrathin-layer chromatography,” J. Chromatogr. Sci., vol. 40, no. 10, pp. 550–552, Dec. 2002.
    [38] H. E. Hauck and M. Schulz, “Ultra thin-layer chromatography,” Chromatographia, vol. 57, no. 1, pp. S313–S315, Jan. 2003.
    [39] S. R. Jim, “Nanoengineered Glancing Angle Deposition Thin Films for Ultrathin-Layer Chromatography,” 2014.
    [40] D. S. Jensen et al., “Ozone priming of patterned carbon nanotube forests for subsequent atomic layer deposition-like deposition of SiO2 for the preparation of microfabricated thin layer chromatography plates,” J. Vac. Sci. Technol. B, vol. 31, no. 3, p. 031803, May 2013.
    [41] P. Kampalanonwat, P. Supaphol, and G. E. Morlock, “Electrospun nanofiber layers with incorporated photoluminescence indicator for chromatography and detection of ultraviolet-active compounds,” J. Chromatogr. A, vol. 1299, pp. 110–117, Jul. 2013.
    [42] T. E. Newsome and S. V. Olesik, “Silica-based nanofibers for electrospun ultra-thin layer chromatography,” J. Chromatogr. A, vol. 1364, pp. 261–270, Oct. 2014.
    [43] J. E. Clark and S. V. Olesik, “Technique for Ultrathin Layer Chromatography Using an Electrospun, Nanofibrous Stationary Phase,” Anal. Chem., vol. 81, no. 10, pp. 4121–4129, May 2009.
    [44] S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett., vol. 87, no. 3, p. 031908, Jul. 2005.
    [45] S. R. Jim, A. J. Oko, M. T. Taschuk, and M. J. Brett, “Morphological modification of nanostructured ultrathin-layer chromatography stationary phases,” J. Chromatogr. A, vol. 1218, no. 40, pp. 7203–7210, Oct. 2011.
    [46] J. Wannenmacher, S. R. Jim, M. T. Taschuk, M. J. Brett, and G. E. Morlock, “Ultrathin-layer chromatography on SiO2, Al2O3, TiO2, and ZrO2 nanostructured thin films,” J. Chromatogr. A, vol. 1318, pp. 234–243, Nov. 2013.
    [47] S. R. Jim, M. T. Taschuk, G. E. Morlock, L. W. Bezuidenhout, W. Schwack, and M. J. Brett, “Engineered Anisotropic Microstructures for Ultrathin-Layer Chromatography,” Anal. Chem., vol. 82, no. 12, pp. 5349–5356, Jun. 2010.
    [48] C. L. Brosseau, A. Gambardella, F. Casadio, C. M. Grzywacz, J. Wouters, and R. P. Van Duyne, “Ad-hoc Surface-Enhanced Raman Spectroscopy Methodologies for the Detection of Artist Dyestuffs: Thin Layer Chromatography-Surface Enhanced Raman Spectroscopy and in Situ On the Fiber Analysis,” Anal. Chem., vol. 81, no. 8, pp. 3056–3062, Apr. 2009.
    [49] J. Chen, J. Abell, Y. Huang, and Y. Zhao, “On-Chip Ultra-Thin Layer Chromatography and Surface Enhanced Raman Spectroscopy,” Lab. Chip, vol. 12, no. 17, pp. 3096–3102, Jul. 2012.
    [50] F. Gao, Y. Hu, D. Chen, E. C. Y. Li-Chan, E. Grant, and X. Lu, “Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor,” Talanta, vol. 143, pp. 344–352, Oct. 2015.
    [51] W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst, vol. 138, no. 13, pp. 3679–3686, Jun. 2013.
    [52] J. Yang, J. B. Li, Q. H. Gong, J. H. Teng, and M. H. Hong, “High aspect ratio SiNW arrays with Ag nanoparticles decoration for strong SERS detection,” Nanotechnology, vol. 25, no. 46, p. 465707, Nov. 2014.
    [53] H.-H. Wang et al., “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10 nm Gaps,” Adv. Mater., vol. 18, no. 4, pp. 491–495.
    [54] M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst, vol. 140, no. 2, pp. 386–406, Dec. 2014.
    [55] C. Fang et al., “Metallization of Silicon Nanowires and SERS Response from a Single Metallized Nanowire,” Chem. Mater., vol. 21, no. 15, pp. 3542–3548, Aug. 2009.
    [56] C.-Y. Chen, C.-S. Wu, C.-J. Chou, and T.-J. Yen, “Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature,” Adv. Mater., vol. 20, no. 20, pp. 3811–3815.
    [57] C.-Y. Chen, D. H. Phan, C.-C. Wong, and T.-J. Yen, “Vertically-Aligned of Sub-Millimeter Ultralong Si Nanowire Arrays and Its Reduced Phonon Thermal Conductivity,” J. Electrochem. Soc., vol. 158, no. 5, pp. D302–D306, May 2011.
    [58] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “Metal-Assisted Chemical Etching of Silicon: A Review,” Adv. Mater., vol. 23, no. 2, pp. 285–308, Jan. 2011.
    [59] K. W, “Chemical etching of silicon, germanium, gallium arsenide, and gallium phosphide.,” RCA Rev Radio Corp Am, vol. 39, no. 2, pp. 278–308, 1978.
    [60] R. A. Wind, H. Jones, M. J. Little, and M. A. Hines, “Orientation-Resolved Chemical Kinetics:  Using Microfabrication to Unravel the Complicated Chemistry of KOH/Si Etching,” J. Phys. Chem. B, vol. 106, no. 7, pp. 1557–1569, Feb. 2002.
    [61] X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, “High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides,” Appl. Phys. Lett., vol. 96, no. 5, p. 053104, Feb. 2010.
    [62] Y. Fan et al., “Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis,” 2015.
    [63] B. Liu, P. Zhou, X. Liu, X. Sun, H. Li, and M. Lin, “Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures,” Food Bioprocess Technol., vol. 6, no. 3, pp. 710–718, Mar. 2013.
    [64] N. M. Ravindra, S. R. Marthi, and S. Sekhri, “Modeling of Optical Properties of Black Silicon/Crystalline Silicon,” J. Sci. Ind. Metrol., vol. 1, no. 1, Nov. 2015.
    [65] Y. Xia, B. Liu, S. Zhong, and C. Li, “X-ray photoelectron spectroscopic studies of black silicon for solar cell,” J. Electron Spectrosc. Relat. Phenom., vol. 184, no. 11, pp. 589–592, Jan. 2012.
    [66] K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology, vol. 11, no. 3, p. 161, 2000.
    [67] H.-L. Chen, Z.-H. Yang, and S. Lee, “Observation of Surface Coverage-Dependent Surface-Enhanced Raman Scattering and the Kinetic Behavior of Methylene Blue Adsorbed on Silver Oxide Nanocrystals,” Langmuir, vol. 32, no. 40, pp. 10184–10188, Oct. 2016.
    [68] F. K. Alsammarraie and M. Lin, “Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk,” J. Agric. Food Chem., vol. 65, no. 3, pp. 666–674, Jan. 2017.

    QR CODE