簡易檢索 / 詳目顯示

研究生: 陳永境
Chen, Yong-Zing
論文名稱: 以quasi-linear法建立頻域內耳聽覺生理模型
Establishing an auditory model of the inner ear in the frequency domain by quasi-linear methods
指導教授: 劉奕汶
Liu, Yi-Wen
口試委員: 劉奕汶
Liu, Yi-Wen
李瑞光
Lee, Ray-Kuang
黃柏鈞
Huang, Po-Chiun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 57
中文關鍵詞: 耳蝸時域模型頻域模型電流敏感度常數外毛細胞
外文關鍵詞: quasi-linear, FDM, sensitivity ratio, outter hair cells
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去藉由電腦模擬人類的聽覺機制往往使用時域上的模型,而利用頻域模型來進行模擬的方式則較少被使用與討論。時域模型因為針對每個時間點解微分方程組,因此擁有擬真度較高的優點,但相對而言運算量複雜度也比較大;反之,頻域模型則可藉由轉移函數快速得到模擬結果。但由於耳蝸為非線性系統,其放大機制無法以簡單的線性關係描述,因此會產生較大誤差。
    本論文以Liu and Neely在2009年提出的內耳模型為基礎,利用數學技巧:quasi-linear method的迭代過程找出耳蝸的等效電流敏感度並改造上述模型,如此便可建構符合耳蝸非線性的頻域模型,更有效率也更貼近真實生理特性的模擬人類聽覺現象。
    以此改造過的頻域模型模擬不同耳蝸特性包含:網狀膜(Reticular Lamina)位移及相位、電流敏感度常數(sensitivity ratio)、單位距離穿越波數(wave number),並與Liu and Neely在2010年提出的中耳至內耳時域模型模擬結果進行比較,發現大部分模擬結果能與時域模型吻合,並且也更快速的模擬出結果。


    While the frequency domain equivalent models were seldom utilized and discussed, previous computer models to simulate human auditory mechanism were mainly constructed in the time domain. With a higher computational complexity, the time domain models usually match the real mechanism well, for they require solving a set of partial differential equations for each time step. The frequency domain models, on the other hand, offer faster simulation results through transfer functions. However, due to the nonlinearity of the cochlea, the amplification mechanism cannot be described with simple linear relationships, and the results from the frequency domain models could deviate from the real mechanism.
    Based on the frequency model of the inner ear (Liu and Neely, 2009), this study improves the existing model by introducing the effective sensitivity of the cochlea, which could be approximated by the quasi-linear method. The frequency domain model with nonlinearity is established through this approach, providing more precise simulation results with high efficiency.
    The improved frequency model is capable of simulating different cochlear characteristics, including the displacement and phase of Reticular Lamina, the sensitivity ratio, and the wave number per length. Comparing with the simulation results from the previous time domain model(Liu and Neely, 2010), the improved frequency domain model in this study provides compatible results and a efficient solution to the simulation of human auditory mechanism.

    中文摘要 i Abstract ii 誌謝 iii 目次 iv 圖附錄 vi 第一章 緒論 1 1.1研究動機與目的 1 1.2研究內容 2 1.3論文架構 2 第二章 聽覺生理結構與參考模型介紹 3 2.1人體聽覺系統 3 2.1.1 聽覺生理結構簡介 3 2.1.2 外耳(Outer Ear)與中耳(Middle Ear) 4 2.1.3 耳蝸(Cochlea) 5 2.2聽覺模型 9 Liu and Neely Model-中耳至內耳耳蝸與外毛細胞模型 9 2.2.1 中耳至卵圓窗 10 2.2.2 外毛細胞-細胞體之電動性 11 2.2.3 外毛細胞-毛欉曲折之力電轉換能模型 13 2.2.4 耳蝸行進波流體力學模擬 14 2.2.5 耳蝸與外毛細胞模型結合 15 頻率響應 17 Liu and Neely Model總結 19 第三章 模型之建構與結果分析 20 3.1演算法 20 3.1.1 Quasi Linear method 21 3.1.2 演算法流程 22 3.2不動點原理 23 3.2.1 不動點的猜測 23 3.2.2 初值問題 27 收斂 29 無法收斂 31 迭代改進方法 34 3.3 模擬結果與耳蝸生理特性分析 35 A(10 20 30dB) 37 B(40 50dB) 41 C(60 70 80dB) 44 第四章 結論與未來展望 48 結論 48 未來展望 49 參考文獻 51 附錄1 中耳至內耳耳蝸及外毛細胞模型係數設定 54 附錄2 4000Hz γ_0迭代的收斂情形 56

    [1] Liu, Y. W., and Neely, S. T. (2010). “Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells,” J. Acoust. Soc. Am., 127(4), 2420–2432.
    [2] Liu, Y. W., and Neely, S. T. (2009). “Outer hair cell electromechanical properties in a nonlinear piezoelectric model,” J. Acoust. Soc. Am., 126(2), 751–761.
    [3] Kanis, L. J., and de Boer, E. (1993). “Self‐suppression in a locally active nonlinear model of the cochlea: A quasilinear approach,” J. Acoust. Soc. Am., 94(6), 3199–3206.
    [4] Meaud, J., and Grosh, K. (2012). “Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea,” Biophys J, 102(6), 1237–1246.
    [5] Kandel, E., Schwartz, J., Jessell T. (2000). Principles of Neural Science (4th ed., pp. 591–624). New York: McGraw-Hill Co.
    [6] Guinan, J. J. (2007). “Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans,” Ear and Hearing, 27(1), 589.
    [7] Squire, L. R. (2008). Fundamental neuroscience. Amsterdam; Boston: Elsevier/ Academic Press.
    [8] Fishbeck, D. W., and Sebastiani, A. M. (2008). Comparative Anatomy: Manual of Vertebrate Dissection, (2nd ed.). Morton Publishing Company.
    [9] Lopez-Poveda, E. A., Palmer, A. R., and Meddis, R. (2010). The Neurophysiological Bases of Auditory Perception (pp. 99–110). New York: Springer.
    [10] von Békésy, G. (1949). “The vibration of the cochlear partition in anatomical preparations and in models of the inner ear,” J. Acoust. Soc. Am., 21(3), 233–245.
    [11] Altschuler, R. A., and Bobbin, R. P. (1986). Neurobiology of Hearing: The Cochlea. (pp. 109–122). New York: Raven Press.
    [12] Young, E. D., and Oertel, D. (2004). Chap. 4 The cochlear nucleus. In Shepherd, G. M., The Synaptic Organization of the Brain. (pp. 125–171). Oxford; New York: Oxford University Press.
    [13] Flanagan, J. L., Allen, J. B., Hasegawa-Johnson M. A. (2008). Chap. 6 The Ear and Hearing. In Speech Analysis Synthesis and Perception (pp. 147–189). The third edition.
    [14] Shera, C. A. (2007). “Laser amplification with a twist: traveling-wave propagation and gain functions from throughout the cochlea,” J. Acoust. Soc. Am., 122(5), 2738–2758.
    [15] Fuchs, P. A., E. Glowatzki, et al. (2003). “The afferent synapse of cochlear hair cells,” Curr Opin Neurobiol, 13(4), 452–458.
    [16] Guinan, J. J. (2011). Chap. 3 Physiology of the Medial and Lateral Olivocochlear System. In Ryugo, D. K., R. R. Fay, et al. Auditory and Vestibular Efferent (pp. 39–81). New York, Springer.
    [17] William, W. F. (2011). Chap. 4 Pharmacology and Neurochemistry of olivocochlear efferent. In Ryugo, D. K., R. R. Fay, et al. Auditory and vestibular efferent (pp. 83–101). NewYork, Springer.

    [18] Matthews, J. W. (1983). “Modeling reverse middle ear transmission of acoustic distortion signals,” in Mechanics of Hearing, edited by E. de Boer and M. A. Viergever Delft University Press, Delft. (pp. 11–18).

    [19] Kennedy, H. J., Crawford, A. C., et al. (2005). “Force generation by mammalian hair bundles supports a role in cochlear amplification,” Nature, 433(7028), 880–883.
    [20] Tinevez, J. -Y., Jülicher, F., et al (2007). “Unifying the various incarnations of active hair-bundle motility by the vertebrate hair cell,” Biophys J, 93(11), 4053–4067.
    [21] Dallos, P. (1973). The Auditory Periphery: Biophysics and Physiology. NewYork: Academic Press..
    [22] Fettiplace, R., Crawford, A. C. (2006). “Signal transformation by mechanotransducer channels of mammalian outer hair cells,” Auditory Mechanisms: Processes and Models (pp. 245–253).
    [23] Mountain, D. C., and Hubbard, A. E. (1994). “A piezoelectric model of outer hair cell function,” J. Acoust. Soc. Am., 95(1), 350–354.
    [24] Kellert, S. H. (1993). In the Wake of Chaos: Unpredictable Order in Dynamical Systems. . (p. 32). Chicago: University of Chicago Press.
    [25] Shera, C. A., and Guinan, J. J. (1999). “Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs,” J. Acoust. Soc. Am., 105(2), 782–798.
    [26] Satheesh, S., and Sreenivas, T. V. (2001). “A switched DPCM/subband coder for pre-echo reduction, ” In EUROSPEECH 2001 Scandinavia, 7th European Conference on Speech Communication and Technology, 2nd INTERSPEECH Event (pp.2009-2012), Aalborg, Denmark, September 3-7, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE