簡易檢索 / 詳目顯示

研究生: 鄭為允
Cheng, Wei-Yun
論文名稱: 彩虹腦影像的神經切割與追蹤系統之建構
Neuron Segmentation and Tracing system for Brainbow Imagery
指導教授: 陳永昌
Chen, Yung-Chang
口試委員: 黃文良
盧鴻興
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 52
中文關鍵詞: 彩虹腦影像切割神經追蹤
外文關鍵詞: Brainbow imagery, neuron tracing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的神經追蹤方法著重於追蹤單一神經元,因此在彩虹腦技術產生的含有多神經與色彩的影像中較不適用。在本篇論文中,我們提出了在不同色彩通道上以自動的方式找尋神經元細胞核並且以形態學與三維空間中利用事先設定的前後景資訊做透明度分析的方法追蹤其突觸,最後需再透過人工給定閥值來切割出單一神經的半自動化系統。本篇論文的想法是基於生物學家手動切割神經時的流程來設計,先根據神經元細胞核與突觸在形狀上巨大的差異來定位出細胞核的位置,再以其灰階值和三維空間中點與點之間的相連性做為追蹤突觸的根據。而在神經突觸相互纏繞的部分,我們將通常使用於二維空間的透明度分析方法拓展到了三維空間之中,並且取得了一些不錯的成果,在結果章節中展示出一些克服的結果與詳細的狀況說明。


    Due to dozens of colorized neuron fibers spreading densely in a very intricate structure, it is difficult to trace them by using existing algorithms designed for monochrome single-neuron images and also time-consuming to label them manually. We propose a neuron segmentation system on Drosophila Brainbow image stack. The idea follows the steps of manually, that is, the system is designed to imitate the way biological experts identify different neurons. Besides, because the “color information” of Brainbow imagery is a composite signal coming from those captured by different band-pass filters, it is straightforward to consider each channel independently. On the other hand, according to the considerable morphological differences between cell bodies and neuron fibers, some three-dimensional morphological processing methods could also be applied. Based on the location and the fluorescence intensity of each cell body, we can trace and segment each neuron by considering the similarities among adjacent voxels. The proposed system can provide segmentation results semi-automatically, and thus it would be useful for biologists in identifying the neural-circuits.

    Abstract i Table of Contents ii List of Figures iv List of Tables vi Chapter1 Introduction 1 1.1 Motivation 1 1.2 Brief Description of Proposed System 2 1.3 Thesis Organization 3 Chapter2 Biological Background and Related Works 4 2.1 Biological Backgrounds 4 2.2 Methods and Equipment for Brainbow and Flybow Images 5 2.3 Related Works 8 2.4 Problem Description 9 Chapter3 Methods: Filtering, Thresholding, Labeling, Morphological Processing and Image Matting 10 3.1 High-boost Filtering and Linear Stretch 10 3.2 Otsu’s Methods 13 3.3 Erosion and Dilation on Gray-scale Image 14 3.4 White Top-hat Transformation 16 3.5 Labeling 17 3.6 Morphological Reconstruction 18 3.7 Image Matting 18 Chapter4 Neuron Segmentation System 21 4.1 System Overview 21 4.2 Pre-processing 24 4.3 Cell Body Localization and Segmentation 27 4.4 Neuron Tracing Based on Located Cell Bodies 31 4.5 Image Matting 32 4.6 Summary 34 Chapter5 Experiment Result and Discussion 36 5.1 Experiment Data Guide 36 5.2 Experiment Result 37 5.3 Discussion 48 Chapter6 Conclusion and Future Works 49 Reference 51

    [1] J. Lichtman, J. Livet, and J. Sanes, "A technicolour approach to the connectome," Neuronscience, pp. 417-422, June 2008.

    [2] S. Hampel, P. Chung, C. E. McKellar, D. Hall, L. L. Looger, and J. H. Simpson, "Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns," Nature Methods, pp. 253-260, March 2011.

    [3] H.H. Yu, C.H. Chen, L. Shi, Y. Huang, and T. Lee, "Twin-spot MARCM to reveal the developmental origin and identity of neurons," Nature Neuroscience, pp. 947-953, 2009.

    [4] D. Hadjieconomou, S. Rotkopf, C. Alexandre, D. Bell, B. Dickson, and I. Salecker, ”Flybow: genetic multicolor cell labeling for neural circuit analysis in drosophila melanogaster”, Nature Methods, vol.8, pp.260–266, 2011.

    [5] J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, ”Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system”, Nature, vol.450, pp.56–62, 2007.

    [6] E. Bas and D. Erdogmus, "Piecewise linear cylinder models for 3-dimensional axon segmentation in brainbow imagery," ISBI 2010, pp. 1297-1300.

    [7] T.Y. Wu, H.H. Juan, Henry H.S. Lu, and A.S. Chiang, "A crosstalk tolerated neural segmentation methodology for Brainbow images," in Proceedings of 4th International Symposium On Applied Sciences In Biomedical And Communication Technologies (ISABAL), 2011.

    [8] H.C. Shao, W.Y. Cheng, Y.C. Chen, and W.L. Hwang, ”Flybow image segmentation for tracing neuron circuits in Drosophila brain”, to appear in BIOSIGNALS 2012, Feb. 1–4, 2012, Vilamoura, Protugal1.

    [9] P. C. Lee, H. M. Chang, C. Y. Lin, Y. T. Ching, and A. S. Chiang, "Constructing Neuronal Structure from 3D Confocal Microscopic Images," Journal of Medical and Biological Engineering, vol. vol.29, 2009.

    [10] H. Peng, F. Long, and G. Myers, ”Automatic 3D neuron tracing using all-path pruning”, In Proceedings of Bioinformatics [ISMB/ECCB] 2011, pp.239–247.

    [11] A. Rodriguez, D. Ehlenberger, P. Hof, and S. Wearne, "Three-dimensional neuron tracing by voxel scooping," Journal of Neuroscience Methods, vol. vol.184, pp. 169-175, 2011.

    [12] N. Otsu, "A Tlreshold Selection Method from Gray-Level Histograms," IEEE Transections on Systems, Man, and Cybernetics, pp. 62-66, January 1979.

    [13] R. C. Gonzalez and R. E. Woods, Digital Image Processing, third edition., 2008, Publishing House of Electronic Industry.

    [14] F. Rodriguez, E. Maire, P. C. Rade, and J. Darrozes, "The Black Top Hat function applied to a DEM: A tool to estimate rescent incision in a mountainous watershed," Geographysical Research Letters, vol. 29, No. 6, pp.1085, March 2002.

    [15] A. Levin, D. Lischinski, and Y. Weiss, ”A closed-form solution to natural image matting”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, pp.228–242, February 2008.

    [16] A. Levin, A. Rav-Acha, and D. Lischinski, "Spectral Matting," IEEE Trans. Pattern Anal. Mach. Intell., vol. vol.30, pp. 1699-1712, October 2008.

    [17] MathWorks - MATLAB and Simulink for Technical Computing. [Online]. http://www.mathworks.com/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE