簡易檢索 / 詳目顯示

研究生: 吳欣頻
Hsin-Ping Wu
論文名稱: 無晶型硼粉與氟化鋰之熱行為研究
Study on Thermal Behavior of Amorphous Boron and Lithium Fluoride
指導教授: 周更生
Kan-Sen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 73
中文關鍵詞: 無星型硼粉氟化鋰熱行為
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於硼每單位重量熱值(13800 cal/g)遠高於許多常用燃料,適宜作為火箭吸氣式(air-breathing)燃料推進劑的重要成份。但硼的熔點與沸點分別為2450K與3931K,接觸空氣後硼外部極易形成氧化硼層,而氧化硼在常壓下的沸點高達2316K,因此在利用硼的高產熱值之前,必須先移除硼粉外側的氧化硼層,使硼顯露以進行燃燒並釋放熱能。有文獻提出可利用氟化物幫助氧化硼層的移除,尤其是LiF能與B2O3反應形成沸點較低的產物(BOF、LiBO2),有降低硼點燃所需溫度的效果,因而發揮硼的高熱值特性。
    本研究利用中和沉積法在硼粉存在下製備LiF粉末。再以XPS進行表面元素的分析,推知B與LiF粉末中元素鍵結的情形;並藉由SEM、 TGA、DSC等分析儀器探討無晶型硼粉以及B/LiF粉末在熱處理前後,重量、化學結構、形態之變化,期望能增進對此反應機制的了解。
    相較於原始無晶型硼粉熱處理後重量增加一倍,LiF的存在能使B/LiF樣品熱重損失增加,而兩者物理結合的方式使得粉末顆粒的結構以及LiF含量的多寡,成為影響熱重損失效率的因素。當固定B/LiF莫耳比例為1/0.1,隨著反應物(LiOH及HF)濃度提高,LiF顆粒越小表面積越大者能提高與硼粉互相摻雜的機會,硼粉表面之B2O3與LiF接觸機會也跟著增加,有利於兩者化學反應的進行。


    Due to its high gravimetric heating value (13800cal/g), boron is often used as the basic component of air-breathing propellant fuels. The melting point and boiling point of boron are 2450K and 3931K, respectively. Once contacting with air, boron can easily transform into B2O3 with high boiling point 2316K under normal pressure on the surface of boron particle. To utilize the high heating value of boron, it is necessary to remove B2O3 layer on the boron particle. It was mentioned in some literatures that fluoride can help the removal of B2O3 layer, especially LiF which can react with B2O3 and produce products (i.e. BOF, LiBO2) with low boiling point. As a result, it would be easier to ignite boron particles to liberate its high heating value.
    By neutralizing precipitation method, LiF powders are prepared in the presence of boron powders. From XPS surface analysis, we can realize how the elements in B/LiF powders bonding with each other. SEM, TGA, DSC are also used to realize the differences in weight, structure and morphology between amorphous boron powders and B/LiF powders.
    From the thermal analysis, unlike the weight gain of amorphous boron powders, LiF can cause weight loss for B/LiF powders. Because of the physical attachment between boron and LiF, the particle structure and the content of LiF become the crucial factors of weight loss efficiency. With the increase of reactant concentration under the same molar ratio B/LiF=1/0.1, LiF particles have smaller size and larger surface area to enhabce the efficiency contacting with boron particles. Therefore LiF can readily contact with B2O3 on the surface of boron to promote the reaction.

    目錄 第一章 前言 01 第二章 文獻回顧 2-1 燃燒現象 05 2-2 燃燒機制 06 2-3 水蒸汽的影響 12 2-4 改進硼燃燒行為之方法 14 2-4.1 薄金屬層 15 2-4.2 氟化物 17 2-4.3 氟化鋰 17 2-4.4 碳氟化合物 19 第三章 實驗 3-1 實驗藥品與儀器 23 3-2 實驗方法 24 第四章 結果與討論 4-1 硼粉基本分析 26 4-1.1 粒徑與型態 26 4-1.2 熱重分析 29 4-1.3 XPS分析 37 4-2 氟化鋰基本分析 42 4-2.1 物性 42 4-2.2 製備 42 4-2.3 熱行為 43 4-2.4 反應物濃度對LiF顆粒大小的影響 46 4-3 無晶型硼粉與氟化鋰的包覆實驗 49 4-3.1 實驗構想 49 4-3.2 B粉存在下,以中和沉積法製備LiF 51 4-3.3 反應濃度對B/LiF熱重表現的影響 63 第五章 結論 68 第六章 參考文獻 70

    Beltran, M. R. “Solid Fuel and Combustors, SBIR Phase 1,” Contract No. F 33615-83-C-2367(1985).

    Boussios, A., “Primary and secondary combustion chamber in combustion propulsion with Boron as Propellant,” N78-156000, ESA-77-452-revised(1978).

    Brower, J. G., “Kirk-Othmer Encycl. of Chem. Tech., 3rd ed., ” Interscience, New York(1978).

    Daily, J. W., “Propellants and combustion,” Aerospace America, 12, 67(1988).

    Guo, X. C. and P. Dong, “Multistep coating of thick titania layers on monodisperse silica nanospheres,” Langmuir., 15, 5535(1999).

    Gurevich, M. A., I. M. Kir’yanov and E. S. Ozerov, “Combustion of individual boron particles,” Combust. Explos. Shock Waves., 19, 217(1969).

    King, M. K, “Boron particle ignition in hot gas streams,” Combust. Sci. Technol., 8, 255(1974)

    King, M. K. “Ignition and combustion of boron particles and clouds,” J. Spacecr. Rockets., 19, 294(1982).

    King, M. K., “Modeling of pressure-coupled response functions of solid propellants,” 19th JANNAF Combustion Meeting CPIA Publication, 707(1982).

    Krier, H., R. L. Burton., S. R. Pirman, and M. J. Spalding, “Shock initiation of crystalline boron in oxygen and fluorine compounds,” J. Propuls. Power, 12, 672(1996).

    Kriser, B., “Methods for the characterization of boron,” in Combustion of Boron-based Solid Propellants and Soles Fuels,” edited by K. K. Kuo, CRC Press, Boca Raton, Florida, USA(1993), 81.

    Li, S. C. and, F. A. Williams, “Combustion of boron-based propellants and solid fuels,” 23rd Symposium (International) on Combustion, 1147, The Combustion Institute, Pittsburgh, P.A., USA(1990).

    Liu, T. K. S. P. Luh and H. C. Perng, “Effect of boron particle surface coating on combustion of solid propellants for ducted rockets,” Propellants, Explos., Pyrotech., 16, 156(1991).

    Liu, T. K., I. M. Shyu and Y. S. Hsia, “Effect of fluorinated graphite on combustion of boron and boron-based fuel-rich propellants,” J. Propuls. Power, 12, 26(1996).

    Macek A. and Semple J. M., “Combustion of boron particles at atmosphere pressure,” Combust. Sci. Technol., 1, 181(1969).

    Macek A. and J. M. Semple, “Combustion of boron particles. experiment and theory,” 23rd Symposium (International) on Combustion, 1401, The Combustion Institute, Pittsburgh, P.A., USA(1972).

    Margrave, J. L. “Gaseous molecules of geochemical significance,” J. Phys. Chem., 60, 715(1956).

    Maulder, J. F., W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of X-Ray Photoelectron Spectroscopy”, Physical Electronics, Eden Prairie, Minn. USA(1995).

    Meiköhn, D. and Bergmann, J., “Theoretical considerations of boron combustion in ducted rockets,” European Space Agency, ESA-TT-703(1981).

    Prentice, J. L., “Metal particle combustion progress report,” Naval Weapons Center, China Lake, Calif., USA(1968).

    Rosenband, V., B. Natan, and A. Gany, “Ignition of boron particles coated by a thin titanium film,” J. Propuls. Power, 11, 1125(1995).

    Schmotolocha, S. N. & R. B. Edelman, “High speed ignition and combustion characteristics of storable fuels using a hot gas pilot igniter,” Govt. Rep. Announce. (U.S.), 72, 226 (1972).

    Sutton, G. Paul, “Rocket Propulsion Elements, 3rd ed.,” Wiley, New York(1967).

    Swanson, T., Natl. Bur. Stand(U.S.), Cric, 539, 1, 61(1953).

    Talley, Cloude P., “Combustion of elemental boron,” Aerosp. Eng., 18, 37(1959).

    Wang, P., Polytechnic Institute of New York Brooklyn, New York , USA., ICDD Grant-in-Aid, (1979).

    Watanabe, N., T. Nakajima, and H. Touhara, “Studies in Inorganic Chemistry 8,” Elsevier, N.Y., USA(1988), pp. 23, 24, 34, 120, 143.

    Windholz, M., S. Budavari, R. F. Blumetti and E. S. Otterbein, “The Merck Index, 10th ed.,” Merck & Co., Inc., Rahway, N. J., USA(1983).

    Yeh, C. L. and K. K. Kuo, “Ignition and combustion of boron particles,” Prog. Energy Combust. Sci., 22, 511(1996).

    Yeh, C. L. and K. K. Kuo, “Experimental studies of boron particle combustion,” Proceedings of the International Symposiums of Transport Phenomena in Combustion, 1461(1996).

    Yoshio, O. and G. Nakashita, “Urethane reaction mechanism on the amorphous boron surface in GAP propellants,” Propellants, Explos., Pyrotech., 17, 278(1992).

    李疏芬, 金榮超, 郭敬為, 「硼粒子的表面包覆及其性能分析」,含能材料, 4, , 102(1996).

    崔愛莉, 王亭杰, 金涌, “SiO2和Al2O3在TiO2表面的成核包覆與成膜包覆,” 化工冶金, 20, 178(1999).

    蕭博文, 邱義雄, 何世延, “硼粉表面處理研究”,第十三屆高分子研討會論文集專輯, 6, 653(1990).

    蕭博文, “硼粉表面處理研究,” 碩士論文, 清華大學(1993).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE