簡易檢索 / 詳目顯示

研究生: 林煒翔
Wei-Hsiang Lin
論文名稱: 分析吳郭魚 AMPA 受器次單元 tfGRIA1 去敏感化作用
Analysis of the desensitization of a tilapia AMPA receptor subunit tfGRIA1
指導教授: 周姽嫄
Wei-Yuan Chow
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 95
中文關鍵詞: 麩胺酸受器去敏感化作用
外文關鍵詞: Glutamate receptor, desensitization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • AMPA 受器廣泛表現於哺乳動物的中樞神經系統,是中樞神經中主要的興奮性傳導物質接受器。透過 AMPA 受器 C 端序列與結合蛋白的交互作用,調控受器在神經突觸上的表現、聚集以及在細胞膜與細胞質之間的輸送。硬骨魚類由於基因複製的關係,斑馬魚及吳郭魚皆表現八種 AMPA 受器次單元。演化過程中,魚類 AMPA 受器的胺基酸序列及功能雖皆具保留性,然而仍存有些許變異。我們以酵母菌雙合實驗篩選出吳郭魚 AMPA 受器次單元 tfGRIA1β C 端序列交互作用蛋白 p22。p22 帶有 4 個 EF-hand 鈣離子結合位及 N-myristoylation 修飾位。破壞 p22 第 3 個 EF-hand 鈣離子結合位喪失與 tfGRIA1β C 端序列結合的能力,而破壞 p22 N-myristoylation 修飾位不影響與tfGRIA1β C 端序列的結合。tfGRIA1β 與 p22 結合是透過tfGRIA1β C 端 28 個胺基酸。比較 tfGRIA1β 與其他能與 p22 結合的蛋白質序列,顯示 p22 不是透過特定序列與 tfGRIA1β C 端結合。我們的實驗也證明 tfGRIA1β C 端與 p22 結合是透過一段能形成 amphipathic α-helix 結構的胺基酸序列以及周圍相鄰序列。過量表現 p22 促使帶有 tfGRIA1β C 端序列的受器嵌合體 tfGRIA3αi/1β N21 離子通道 Glu/KA 斜率趨勢改變,且趨勢的改變受到減緩去敏感化作用的藥物 cyclothiazide 所抑制,顯示 p22 參與 AMPA 受器調控去敏感化作用機制。這是目前所知透過蛋白質交互作用影響 AMPA 受器去敏感化作用的第一個例子。
    AMPA 受器次單元中之 flip/flop 區域也參與調控受器去敏感化作用機制。tfGRIA1α 次單元 flip 序列與多數脊椎動物 AMPA 受器次單元 flip 序列差異較大。我們也證明 tfGRIA1αflip 中 I740 胺基酸參與調控受器的去敏感化速率,然而單一改變 tfGRIA3αflip T740 成為 I740 不影響離子通道去敏感化速率,顯示 AMPA 受器去敏感化速率非單藉由 I740 胺基酸決定。


    AMPA receptors (AMPARs) are major excitatory neurotransmitter receptors and are wildly expressed in the mammalian central nervous system. Through interactions with cellular proteins, the C-terminal domains of AMPAR subunits regulate membrane expression, clustering and recycling of the receptors. Due to a teleost-specific gene duplication event, both zebrafish and tilapia express 8 AMPAR subunits. The primary sequences and ion channel functions are conserved between mammalian and teleost AMPAR subunits. However, some interacting protein recognition sequences of teleost AMPAR subunits are different from that of mammalian AMPAR subunits. An AMPAR subunit tilapia tfGRIA1β C-terminal interacting protein p22 was identified by yeast two-hybrid system. The structure of p22 contains 4 EF-hand calcium binding domains and an N-myristoylation site. Disruption of the third EF-hand domain of p22 affected the interactions with tfGRIA1β C-terminal sequence, whereas disruption of the N-myristoylation site did not affect the interaction. Interaction between tfGRIA1β C-terminal domain and p22 was mapped to a stretch of 28 amino acid sequence which displayed very limited similarities to the interaction sequences found in the other known p22 binding proteins. The lack of sequence conservation among p22 interacting proteins suggests that ligand recognition by p22 is not mediated through consensus sequence. Our result indicated that amphipathic α-helix structure and its neighboring sequences are required for the interaction between p22 and tfGRIA1β subunit. Overexpressing p22 resulted in the alteration of the ratios between maximum currents induced by glutamate and by kainate (IGlu/IKA) of a chimera tfGRIA3αi/1β N21 receptor. The glutamate-induced current is subjected to desensitization, whereas kainate-induced current is not. Addition of the desensitization attenuator, cyclothiazide, abolished the p22 effects on alternation of IGlu/IKA, suggesting that p22 is involved in regulating the desensitization of tfGRIA3αi/1β N21 receptor. This is the first report of regulating AMPAR desensitization accomplished by direct protein-protein interaction.
    The flip/flop region of AMPAR subunits involves in the regulation of desensitization. The flip sequence of teleost GRIA1α subunit varies from that of the other vertebrate AMPAR subunit. We demonstrated that the I740 residue of tfGRIA1αflip subunit involved in the regulation of receptor desensitization. However, mutating the T740 residue to I740 of tfGRIA3αflip subunit does not affect the desensitization, indicating that desensitization is not determined by the Ile at the position 740 alone.

    中文摘要………………………………………………I 英文摘要………………………………………………II 前言……………………………………………………1 材料與方法……………………………………………17 結果……………………………………………………29 討論……………………………………………………45 參考文獻………………………………………………52 圖表及附錄……………………………………………66

    Ammar, Y. B., Takeda, S., Hisamitsu, T., Mori, H., and Wakabayashi, S. (2006). Crystal structure of CHP2 complexed with NHE1-cytosolic region and an implication for pH regulation. Embo J.

    Andrade, J., Pearce, S. T., Zhao, H., and Barroso, M. (2004a). Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules. Biochem J 384, 327-336.

    Andrade, J., Zhao, H., Titus, B., Timm Pearce, S., and Barroso, M. (2004b). The EF-hand Ca2+-binding protein p22 plays a role in microtubule and endoplasmic reticulum organization and dynamics with distinct Ca2+-binding requirements. Mol Biol Cell 15, 481-496.

    Argos, P., Hanei, M., and Garavito, R. M. (1978). The Chou-Fasman secondary structure prediction method with an extended data base. FEBS Lett 93, 19-24.

    Banke, T. G., Bowie, D., Lee, H., Huganir, R. L., Schousboe, A., and Traynelis, S. F. (2000). Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 20, 89-102.

    Barria, A., Derkach, V., and Soderling, T. (1997a). Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem 272, 32727-32730.

    Barria, A., Muller, D., Derkach, V., Griffith, L. C., and Soderling, T. R. (1997b). Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042-2045.

    Barroso, M. R., Bernd, K. K., DeWitt, N. D., Chang, A., Mills, K., and Sztul, E. S. (1996). A novel Ca2+-binding protein, p22, is required for constitutive membrane traffic. J Biol Chem 271, 10183-10187.

    Bass, B. L. (2002). RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71, 817-846.
    Bassand, P., Bernard, A., Rafiki, A., Gayet, D., and Khrestchatisky, M. (1999). Differential interaction of the tSXV motifs of the NR1 and NR2A NMDA receptor subunits with PSD-95 and SAP97. Eur J Neurosci 11, 2031-2043.

    Bear, J., Fountain, N. B., and Lothman, E. W. (1996). Responses of the superficial entorhinal cortex in vitro in slices from naive and chronically epileptic rats. J Neurophysiol 76, 2928-2940.

    Bettler, B., and Mulle, C. (1995). Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology 34, 123-139.

    Bliss, T. V., and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39.

    Boulter, J., Hollmann, M., O'Shea-Greenfield, A., Hartley, M., Deneris, E., Maron, C., and Heinemann, S. (1990). Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249, 1033-1037.

    Bowie, D., and Lange, G. D. (2002). Functional stoichiometry of glutamate receptor desensitization. J Neurosci 22, 3392-3403.

    Bruckner, K., Pablo Labrador, J., Scheiffele, P., Herb, A., Seeburg, P. H., and Klein, R. (1999). EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511-524.

    Burgess, A. W., Ponnuswamy, P. K., and Sheraga, H. A. (1974). Analysis of conformations of amino acid residues and prediction of backbone topography in proteins. Israel J Chem 112, 239-286.

    Burnashev, N., Monyer, H., Seeburg, P. H., and Sakmann, B. (1992). Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189-198.

    Chang, H. M., Wu, Y. M., Chang, Y. C., Hsu, Y. C., Hsu, H. Y., Chen, Y. C., and Chow, W. Y. (1998). Molecular and electrophysiological characterizations of fGluR3 alpha, an ionotropic glutamate receptor subunit of a teleost fish. Brain Res Mol Brain Res 57, 211-220.

    Chen, Y. C., Kung, S. S., Chen, B. Y., Hung, C. C., Chen, C. C., Wang, T. Y., Wu, Y. M., Lin, W. H., Tzeng, C. S., and Chow, W. Y. (2001). Identifications, classification, and evolution of the vertebrate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit genes. J Mol Evol 53, 690-702.

    Choi, D. W., and Koh, J. Y. (1998). Zinc and brain injury. Annu Rev Neurosci 21, 347-375.

    Chung, H. J., Xia, J., Scannevin, R. H., Zhang, X., and Huganir, R. L. (2000). Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 20, 7258-7267.

    Coleman, S. K., Cai, C., Mottershead, D. G., Haapalahti, J. P., and Keinanen, K. (2003). Surface expression of GluR-D AMPA receptor is dependent on an interaction between its C-terminal domain and a 4.1 protein. J Neurosci 23, 798-806.

    Colledge, M., Dean, R. A., Scott, G. K., Langeberg, L. K., Huganir, R. L., and Scott, J. D. (2000). Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 27, 107-119.

    Colquhoun, D., Jonas, P., and Sakmann, B. (1992). Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J Physiol 458, 261-287.

    Cross, F. R., Garber, E. A., Pellman, D., and Hanafusa, H. (1984). A short sequence in the p60src N terminus is required for p60src myristylation and membrane association and for cell transformation. Mol Cell Biol 4, 1834-1842.

    Daw, M. I., Chittajallu, R., Bortolotto, Z. A., Dev, K. K., Duprat, F., Henley, J. M., Collingridge, G. L., and Isaac, J. T. (2000). PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28, 873-886.

    Deleage, G., and Roux, B. (1987). An algorithm for protein secondary structure prediction based on class prediction. Protein Eng 1, 289-294.

    Derkach, V., Barria, A., and Soderling, T. R. (1999). Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A 96, 3269-3274.

    DeSouza, S., Fu, J., States, B. A., and Ziff, E. B. (2002). Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. J Neurosci 22, 3493-3503.

    Dong, H., O'Brien, R. J., Fung, E. T., Lanahan, A. A., Worley, P. F., and Huganir, R. L. (1997). GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279-284.

    Dong, H., Zhang, P., Song, I., Petralia, R. S., Liao, D., and Huganir, R. L. (1999). Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. J Neurosci 19, 6930-6941.

    Edmonds, B., Gibb, A. J., and Colquhoun, D. (1995). Mechanisms of activation of glutamate receptors and the time course of excitatory synaptic currents. Annu Rev Physiol 57, 495-519.

    Egebjerg, J., Kukekov, V., and Heinemann, S. F. (1994). Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence. Proc Natl Acad Sci U S A 91, 10270-10274.

    Estojak, J., Brent, R., and Golemis, E. A. (1995). Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15, 5820-5829.

    Fields, S., and Song, O. (1989). A novel genetic system to detect protein-protein interactions. Nature 340, 245-246.

    Gallo, V., Upson, L. M., Hayes, W. P., Vyklicky, L., Jr., Winters, C. A., and Buonanno, A. (1992). Molecular cloning and development analysis of a new glutamate receptor subunit isoform in cerebellum. J Neurosci 12, 1010-1023.

    Garnier, Gibrat, and Robson (1996). R.F. Doolittle ed. Meth Enzym 266, 97-120.

    Garnier, J., Osguthorpe, D. J., and Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of proteins. J Mol Biol 120, 97-120.
    Greger, I. H., Khatri, L., Kong, X., and Ziff, E. B. (2003). AMPA receptor tetramerization is mediated by Q/R editing. Neuron 40, 763-774.

    Greger, I. H., Khatri, L., and Ziff, E. B. (2002). RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34, 759-772.

    Gregor, P., Mano, I., Maoz, I., McKeown, M., and Teichberg, V. I. (1989). Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature 342, 689-692.

    Hanley, J. G., Khatri, L., Hanson, P. I., and Ziff, E. B. (2002). NSF ATPase and alpha-/beta-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron 34, 53-67.

    Hanson, P. I., Roth, R., Morisaki, H., Jahn, R., and Heuser, J. E. (1997). Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523-535.

    Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C., and Malinow, R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262-2267.

    Holley, L. H., and Karplus, M. (1989). Protein secondary structure prediction with a neural network. Proc Natl Acad Sci U S A 86, 152-156.

    Hollmann, M., Hartley, M., and Heinemann, S. (1991). Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition. Science 252, 851-853.

    Hollmann, M., and Heinemann, S. (1994). Cloned glutamate receptors. Annu Rev Neurosci 17, 31-108.

    Hollmann, M., O'Shea-Greenfield, A., Rogers, S. W., and Heinemann, S. (1989). Cloning by functional expression of a member of the glutamate receptor family. Nature 342, 643-648.

    Hume, R. I., Dingledine, R., and Heinemann, S. F. (1991). Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028-1031.

    Irie, M., Hata, Y., Takeuchi, M., Ichtchenko, K., Toyoda, A., Hirao, K., Takai, Y., Rosahl, T. W., and Sudhof, T. C. (1997). Binding of neuroligins to PSD-95. Science 277, 1511-1515.

    Joint_prediction Prediction made by the program that assigns the structure using a "winner takes all" procedure for each amino acid prediction using the other methods.

    Jonas, P., Racca, C., Sakmann, B., Seeburg, P. H., and Monyer, H. (1994). Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281-1289.

    Kamps, M. P., Buss, J. E., and Sefton, B. M. (1985). Mutation of NH2-terminal glycine of p60src prevents both myristoylation and morphological transformation. Proc Natl Acad Sci U S A 82, 4625-4628.

    Keinanen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T. A., Sakmann, B., and Seeburg, P. H. (1990). A family of AMPA-selective glutamate receptors. Science 249, 556-560.

    King, R. D., and Sternberg, M. J. (1990). Machine learning approach for the prediction of protein secondary structure. J Mol Biol 216, 441-457.

    King, R. D., and Sternberg, M. J. (1996). Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5, 2298-2310.

    Klee, C. B., Ren, H., and Wang, X. (1998). Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273, 13367-13370.

    Kohda, K., Kamiya, Y., Matsuda, S., Kato, K., Umemori, H., and Yuzaki, M. (2003). Heteromer formation of delta2 glutamate receptors with AMPA or kainate receptors. Brain Res Mol Brain Res 110, 27-37.

    Kohler, M., Kornau, H. C., and Seeburg, P. H. (1994). The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. J Biol Chem 269, 17367-17370.
    Kornau, H. C., Schenker, L. T., Kennedy, M. B., and Seeburg, P. H. (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740.

    Kullmann, D. M., Asztely, F., and Walker, M. C. (2000). The role of mammalian ionotropic receptors in synaptic plasticity: LTP, LTD and epilepsy. Cell Mol Life Sci 57, 1551-1561.

    Kung, S. S., Chen, Y. C., Lin, W. H., Chen, C. C., and Chow, W. Y. (2001). Q/R RNA editing of the AMPA receptor subunit 2 (GRIA2) transcript evolves no later than the appearance of cartilaginous fishes. FEBS Lett 509, 277-281.

    Kuwahara, H., Kamei, J., Nakamura, N., Matsumoto, M., Inoue, H., and Kanazawa, H. (2003). The apoptosis-inducing protein kinase DRAK2 is inhibited in a calcium-dependent manner by the calcium-binding protein CHP. J Biochem (Tokyo) 134, 245-250.

    Lee, H. K., Takamiya, K., Han, J. S., Man, H., Kim, C. H., Rumbaugh, G., Yu, S., Ding, L., He, C., Petralia, R. S., et al. (2003). Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631-643.

    Lee, S. H., Simonetta, A., and Sheng, M. (2004). Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Neuron 43, 221-236.

    Leonard, A. S., Davare, M. A., Horne, M. C., Garner, C. C., and Hell, J. W. (1998). SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. J Biol Chem 273, 19518-19524.

    Lin, W. H., Wu, C. H., Chen, Y. C., and Y, C. W. (2006). Embryonic expression of zebrafish AMPA receptor genes: zygotic gria2a expression initiates at the midblastula transition. Brain Research. In process.

    Lin, X., and Barber, D. L. (1996). A calcineurin homologous protein inhibits GTPase-stimulated Na-H exchange. Proc Natl Acad Sci U S A 93, 12631-12636.

    Liu, J. O. (2003). Endogenous protein inhibitors of calcineurin. Biochem Biophys Res Commun 311, 1103-1109.
    Liu, S. J., and Cull-Candy, S. G. (2005). Subunit interaction with PICK and GRIP controls Ca(2+) permeability of AMPARs at cerebellar synapses. Nat Neurosci 8, 768-775.

    Liu, S. Q., and Cull-Candy, S. G. (2000). Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454-458.

    Lomeli, H., Mosbacher, J., Melcher, T., Hoger, T., Geiger, J. R., Kuner, T., Monyer, H., Higuchi, M., Bach, A., and Seeburg, P. H. (1994). Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709-1713.

    Madden, D. R. (2002). The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3, 91-101.

    Malinow, R., and Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25, 103-126.

    Martin, L. J., Furuta, A., and Blackstone, C. D. (1998). AMPA receptor protein in developing rat brain: glutamate receptor-1 expression and localization change at regional, cellular, and subcellular levels with maturation. Neuroscience 83, 917-928.

    Matsumoto, M., Miyake, Y., Nagita, M., Inoue, H., Shitakubo, D., Takemoto, K., Ohtsuka, C., Murakami, H., Nakamura, N., and Kanazawa, H. (2001). A serine/threonine kinase which causes apoptosis-like cell death interacts with a calcineurin B-like protein capable of binding Na(+)/H(+) exchanger. J Biochem (Tokyo) 130, 217-225.

    Mehta, S., Wu, H., Garner, C. C., and Marshall, J. (2001). Molecular mechanisms regulating the differential association of kainate receptor subunits with SAP90/PSD-95 and SAP97. J Biol Chem 276, 16092-16099.

    Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989). The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29, 365-402.

    Monyer, P. J. a. H. (2000). Ionotropic glutamate receptors in the CNS, Peter Jonas and Hannah Monyer. edn (New York: Berlin ;/Springer).

    Mumby, M. C., and Walter, G. (1993). Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 73, 673-699.

    Nakamura, N., Miyake, Y., Matsushita, M., Tanaka, S., Inoue, H., and Kanazawa, H. (2002). KIF1Bbeta2, capable of interacting with CHP, is localized to synaptic vesicles. J Biochem (Tokyo) 132, 483-491.

    Nakanishi, N., Shneider, N. A., and Axel, R. (1990). A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5, 569-581.

    Naoe, Y., Arita, K., Hashimoto, H., Kanazawa, H., Sato, M., and Shimizu, T. (2005). Structural characterization of calcineurin B homologous protein 1. J Biol Chem.

    Nishimune, A., Isaac, J. T., Molnar, E., Noel, J., Nash, S. R., Tagaya, M., Collingridge, G. L., Nakanishi, S., and Henley, J. M. (1998). NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87-97.

    Osten, P., Khatri, L., Perez, J. L., Kohr, G., Giese, G., Daly, C., Schulz, T. W., Wensky, A., Lee, L. M., and Ziff, E. B. (2000). Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27, 313-325.

    Osten, P., Srivastava, S., Inman, G. J., Vilim, F. S., Khatri, L., Lee, L. M., States, B. A., Einheber, S., Milner, T. A., Hanson, P. I., and Ziff, E. B. (1998). The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21, 99-110.

    Paas, Y. (1998). The macro- and microarchitectures of the ligand-binding domain of glutamate receptors. Trends Neurosci 21, 117-125.

    Pang, T., Hisamitsu, T., Mori, H., Shigekawa, M., and Wakabayashi, S. (2004). Role of calcineurin B homologous protein in pH regulation by the Na+/H+ exchanger 1: tightly bound Ca2+ ions as important structural elements. Biochemistry 43, 3628-3636.

    Pang, T., Su, X., Wakabayashi, S., and Shigekawa, M. (2001). Calcineurin homologous protein as an essential cofactor for Na+/H+ exchangers. J Biol Chem 276, 17367-17372.

    Partin, K. M., Fleck, M. W., and Mayer, M. L. (1996). AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J Neurosci 16, 6634-6647.

    Partin, K. M., Patneau, D. K., and Mayer, M. L. (1994). Cyclothiazide differentially modulates desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol Pharmacol 46, 129-138.

    Pellegrini-Giampietro, D. E., Gorter, J. A., Bennett, M. V., and Zukin, R. S. (1997). The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci 20, 464-470.

    Perez, J. L., Khatri, L., Chang, C., Srivastava, S., Osten, P., and Ziff, E. B. (2001). PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 21, 5417-5428.

    Petralia, R. S., Esteban, J. A., Wang, Y. X., Partridge, J. G., Zhao, H. M., Wenthold, R. J., and Malinow, R. (1999). Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci 2, 31-36.

    Pickard, L., Noel, J., Henley, J. M., Collingridge, G. L., and Molnar, E. (2000). Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 20, 7922-7931.

    Rao, A., Kim, E., Sheng, M., and Craig, A. M. (1998). Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J Neurosci 18, 1217-1229.

    Resh, M. D. (1999). Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451, 1-16.

    Robert, A., and Howe, J. R. (2003). How AMPA receptor desensitization depends on receptor occupancy. J Neurosci 23, 847-858.

    Roche, K. W., O'Brien, R. J., Mammen, A. L., Bernhardt, J., and Huganir, R. L. (1996). Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16, 1179-1188.

    Rothman, J. E. (1994). Intracellular membrane fusion. Adv Second Messenger Phosphoprotein Res 29, 81-96.

    Rumbaugh, G., Sia, G. M., Garner, C. C., and Huganir, R. L. (2003). Synapse-associated protein-97 isoform-specific regulation of surface AMPA receptors and synaptic function in cultured neurons. J Neurosci 23, 4567-4576.

    Sakimura, K., Bujo, H., Kushiya, E., Araki, K., Yamazaki, M., Yamazaki, M., Meguro, H., Warashina, A., Numa, S., and Mishina, M. (1990). Functional expression from cloned cDNAs of glutamate receptor species responsive to kainate and quisqualate. FEBS Lett 272, 73-80.

    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular cloning: A laboratory manual, 2nd edn. (Cold Spring Harbor Laboratory press, Cold Spring Harbor, NY).

    Seeburg, P. H. (1996). The role of RNA editing in controlling glutamate receptor channel properties. J Neurochem 66, 1-5.

    Seeburg, P. H. (2002). A-to-I editing: new and old sites, functions and speculations. Neuron 35, 17-20.

    Seeburg, P. H., Higuchi, M., and Sprengel, R. (1998). RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Brain Res Rev 26, 217-229.

    Shen, L., Liang, F., Walensky, L. D., and Huganir, R. L. (2000). Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association. J Neurosci 20, 7932-7940.

    Sheng, M., and Sala, C. (2001). PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24, 1-29.

    Shi, S., Hayashi, Y., Esteban, J. A., and Malinow, R. (2001). Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331-343.
    Sommer, B., Keinanen, K., Verdoorn, T. A., Wisden, W., Burnashev, N., Herb, A., Kohler, M., Takagi, T., Sakmann, B., and Seeburg, P. H. (1990). Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580-1585.

    Song, I., Kamboj, S., Xia, J., Dong, H., Liao, D., and Huganir, R. L. (1998). Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393-400.

    Srivastava, S., Osten, P., Vilim, F. S., Khatri, L., Inman, G., States, B., Daly, C., DeSouza, S., Abagyan, R., Valtschanoff, J. G., et al. (1998). Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. Neuron 21, 581-591.

    Staudinger, J., Lu, J., and Olson, E. N. (1997). Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha. J Biol Chem 272, 32019-32024.

    Staudinger, J., Zhou, J., Burgess, R., Elledge, S. J., and Olson, E. N. (1995). PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol 128, 263-271.

    Stevens, C. F. (1996). Spatial learning and memory: the beginning of a dream. Cell 87, 1147-1148.

    Suzuki, E., Kessler, M., and Arai, A. C. (2005). C-terminal truncation affects kinetic properties of GluR1 receptors. Mol Cell Neurosci 29, 1-10.

    Tavalin, S. J., Colledge, M., Hell, J. W., Langeberg, L. K., Huganir, R. L., and Scott, J. D. (2002). Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J Neurosci 22, 3044-3051.

    Timm, S., Titus, B., Bernd, K., and Barroso, M. (1999). The EF-hand Ca(2+)-binding protein p22 associates with microtubules in an N-myristoylation-dependent manner. Mol Biol Cell 10, 3473-3488.

    Verdoorn, T. A., Burnashev, N., Monyer, H., Seeburg, P. H., and Sakmann, B. (1991). Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252, 1715-1718.

    Wada, K., Dechesne, C. J., Shimasaki, S., King, R. G., Kusano, K., Buonanno, A., Hampson, D. R., Banner, C., Wenthold, R. J., and Nakatani, Y. (1989). Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature 342, 684-689.

    Wenthold, R. J., Petralia, R. S., Blahos, J., II, and Niedzielski, A. S. (1996). Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 16, 1982-1989.

    Whiteheart, S. W., Rossnagel, K., Buhrow, S. A., Brunner, M., Jaenicke, R., and Rothman, J. E. (1994). N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J Cell Biol 126, 945-954.

    Wu, H., Nash, J. E., Zamorano, P., and Garner, C. C. (2002). Interaction of SAP97 with minus-end-directed actin motor myosin VI. Implications for AMPA receptor trafficking. J Biol Chem 277, 30928-30934.

    Wyszynski, M., Kim, E., Dunah, A. W., Passafaro, M., Valtschanoff, J. G., Serra-Pages, C., Streuli, M., Weinberg, R. J., and Sheng, M. (2002). Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting. Neuron 34, 39-52.

    Xia, J., Zhang, X., Staudinger, J., and Huganir, R. L. (1999). Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 22, 179-187.

    Yamazaki, M., Fukaya, M., Abe, M., Ikeno, K., Kakizaki, T., Watanabe, M., and Sakimura, K. (2001). Differential palmitoylation of two mouse glutamate receptor interacting protein 1 forms with different N-terminal sequences. Neurosci Lett 304, 81-84.

    Ye, B., Liao, D., Zhang, X., Zhang, P., Dong, H., and Huganir, R. L. (2000). GRASP-1: a neuronal RasGEF associated with the AMPA receptor/GRIP complex. Neuron 26, 603-617.

    Yellen, G., Jurman, M. E., Abramson, T., and MacKinnon, R. (1991). Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251, 939-942.

    Yool, A. J., and Schwarz, T. L. (1991). Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 349, 700-704.

    吳怡宓 (1998). 吳郭魚麩胺酸受器 cDNA 之選殖及受器基因於發育不同時期表現之研究。國立清華大學輻射生物研究所博士論文。.

    范國賢 (2000). 魚類 fGluR1α(i) 及 fGluR3α(i) 麩胺酸嵌合體受器之電生理特性研究。國立清華大學生命科學研究所碩士論文。.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE