簡易檢索 / 詳目顯示

研究生: 郭智維
Guo, Zhi-Wei
論文名稱: 具隔離聯網功能混合能源供電之電動車開關式磁阻馬達驅動系統
A HYBRID SOURCE POWERED EV SWITCHED-RELUCTANCE MOTOR DRIVE WITH ISOLATED GRID-CONNECTED CAPABILITY
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 王醴
Wang, Li
劉添華
Liu, Tian-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 133
中文關鍵詞: 電動車開關式磁阻馬達電池超電容諧振轉換器變頻器切換式整流器電網至車輛車輛至電網車輛至家庭
外文關鍵詞: electric vehicle, switched-reluctance motor, battery, super-capacitor, resonant converter, inverter, switched-mode rectifier, grid-to-vehicle, vehicle-to-grid, vehicle-to- home
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發具電網至車輛、車輛至家庭、車輛至電網功能之電池/超電容混合能源供電電動車開關式磁阻馬達驅動系統。藉適當電路安排與控制,所提車輛聯網輔助功能均以原馬達驅動系統既存元件實現,而電氣隔離由諧振直流/直流轉換器達成。
    電池與超電容各自經全橋直流/直流轉換器與單臂雙向轉換器介接至馬達驅動級之直流鏈。前者具備低於電池電壓之直流鏈電壓設定彈性,得以於廣速度範圍下提升整體驅動性能。透過所提濾波電流分離與最大電池放電電流設定策略,超電容可有效處理暫態與尖峰功率,電池電流應力從而緩和,而具較平順放電特性。超電容亦協助電池調節其電流追控誤差。此外,超電容被安排於車輛定速時期由電池進行回充,確保需大電流輸出之加速期間,有充足能量協助電池供電。
    在馬達驅動控制方面,為增進線圈電流追蹤響應,迴授控制輔以反電動勢前向控制及強健追蹤誤差消除控制。此外,應用動態換相前移與直流鏈升壓策略,降低於高速/高載下之反電動勢效應。
    於車輛閒置狀態,單相三線切換式整流器由馬達驅動系統既有電路元件構成,以執行車載電池充電之電網至車輛操作。反之,於車輛至家庭/車輛至電網操作下,單相三線變頻器產生110V/220V 60Hz 交流電供給家用或回送電能至電網。於從事電網至車輛/車輛至電網之聯網期間,電池將補償負載虛功及諧波功。此外,進一步建立三相切換式整流器與三相變頻器,從事電動車與三相市電之電網至車輛/車輛至電網操作,可得良好電力品質之車載快速充電。


    This thesis develops a battery/super-capacitor (SC) hybrid source powered electric vehicle (EV) switched-reluctance motor (SRM) drive with grid-to-vehicle (G2V), vehicle-to-home (V2H) and vehicle-to-grid (V2G) functions. Through proper schematic arrangement and control, these auxiliary functions are implemented using the SRM drive embedded components. The galvanic isolation in grid-connected operations is achieved by a resonant DC/DC converter.
    The battery and the SC are connected to the motor drive DC-link via an H-bridge DC/DC converter and a one-leg bidirectional converter, respectively. The former lets the motor drive possess higher flexibility in DC-link voltage setting, which can even be lower than the battery voltage to improve the EV driving performance over wide speed range. Through the proposed filter-based current separation approach and maximum discharging current setting, the battery current stress can be mitigated to have smoother discharging current characteristics. And the SC can effectively deal with the fast and peak power fluctuation. The SC also helps the battery to regulate its current tracking error. In addition, the SC is arranged to be charged by the battery during the constant driving speed duration. Therefore, more sufficient energy of SC to help the battery in acceleration can be ensured.
    In EV motor driving control, to enhance the winding current tracking responses, the properly designed feedback controller is augmented with an observed back electromotive force (EMF) based feed-forward controller and a robust current tracking error cancellation controller (RCECC). Moreover, the commutation shifting and the voltage boosting are applied to reduce the effects of back-EMF under higher speeds and/or heavier loads.
    In idle condition, the original SRM drive schematic is rearranged to form a single- phase three-wire (1P3W) switched-mode rectifier (SMR) to conduct the G2V on-board battery charging. Conversely in V2H/V2G operations, a 1P3W inverter is constructed. The single-phase 60Hz 110V/220V AC voltages are yielded to power the home appliance or send back power to the utility grid. During the G2V/V2G grid-connected operations, the load reactive and harmonic powers can be compensated by the battery. In addition, a three-phase SMR and a three-phase inverter are further established to perform the G2V/V2G operations between the developed EV drive and the three-phase utility grid. The three-phase utility grid can achieve the quick on-board charging with good line drawn power quality.

    ABSTRACT i ACKNOWLEDGEMENT ii LIST OF CONTENTS iii LIST OF FIGURES vi LIST OF TABLES xiii LIST OF SYMBOLS xiv CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BASIC KNOWLEDGES OF SWITCHED-RELUCTANCE MOTOR AND ELECTRIC VEHICLE 5 2.1 Introduction 5 2.2 Switched-Reluctance Motor Drives 5 2.3 SRM Converters 10 2.4 Basics of EV 12 2.5 Load Torque Modeling of EV Motor Drive 13 2.6 EV Charger 16 2.7 Energy Storage Devices 19 2.8 Isolated Interface Converters 22 2.9 The Developed EV SRM Drive 24 CHAPTER 3 EV SRM DRIVE POWERED BY HYBRID ENERGY STORAGE SYSTEM 26 3.1 Introduction 26 3.2 Power Circuit of the Developed SRM Drive 26 3.2.1 System Configuration 26 3.2.2 The Features of the Employed DSP 29 3.2.3 Equivalent Circuit Parameter Estimation of SC 30 3.2.4 Parameter Estimation of the Developed EV Load Test- Bench 33 3.3 Control Schemes and Experimental Evaluation of the Developed SRM Drive 36 3.3.1 Control Schemes 36 3.3.2 Measured Results 40 3.4 Hybrid Energy Storage System 47 3.4.1 Circuit Operation and System Parameters 47 3.4.2 Control Strategy 49 3.5 Performance Evaluation of the Established EV SRM Drive 59 CHAPTER 4 DEVELOPMENT OF BIDIRECTIONAL INTERLEAVED CLLC RESONANT DC/DC CONVERTER 65 4.1 Introduction 65 4.2 Operation Principle of Bidirectional CLLC Resonant Converter 65 4.3 The Developed Interleaved CLLC Resonant Converter 69 4.4 Experimental Verification 74 CHAPTER 5 V2H/G2V/V2G OPERATIONS 82 5.1 Introduction 82 5.2 System Configuration of the Developed 1P3W Inverter 82 5.2.1 Functional Statements 82 5.2.2 System Configuration 83 5.3 Dynamic Modeling of the Developed 1P3W Inverter 86 5.3.1 Voltage Equations 86 5.3.2 Current Equations 87 5.3.3 Equivalent Dynamic System 88 5.4 Control and Performance Evaluation of the Developed 1P3W Inverter 89 5.4.1 V2H Operation 89 5.4.2 G2V/V2G Operations 97 5.5 System Configuration of the Developed 3P3W Inverter 111 5.6 Control and Performance Evaluation of the Developed 3P3W Inverter 113 5.6.1 Control Scheme 113 5.6.2. Measured Results 118 CHAPTER 6 CONCLUSIONS 123 REFERENCES 124

    A. Electric Vehicles
    [1] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, Nov. 2006.
    [2] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
    [3] S. S. Williamson, A. K. Rathore, F. Musavi, “Industrial electronics for electric transportation: Current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
    [4] Denis, N, Dubois, M. R., Trovão, J. P. F., and Desrochers, “Power split strategy optimization of a plug-in parallel hybrid electric vehicle,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 315-326, Jan. 2018.
    [5] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
    [6] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
    [7] S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, K. Tungpimolrut, A. Chiba, and T. Fukao, “A design of 15 kW switched reluctance motor for electric vehicle applications,” in Proc. IEEE ICEMS, 2007, pp. 1690-1693.
    [8] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
    [9] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEV,” IEEE Trans. Ind. Electron., vol. 60, no.72, pp. 2564-2575, 2013.
    [10] K. Kiyota, T. Kakishima, A. Chiba, and M. A. Rahman, “Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 154-162, 2016.
    [11] J. W. Jiang, B. Bilgin, and A. Emadi, “Three-phase 24/16 switched reluctance machine for a hybrid electric powertrain,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 76-85, March 2017.
    [12] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drive for electric propulsion: A comparative study.” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, March 2017.
    B. Switched-Reluctance Motor Drive and Converter
    [13] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
    [14] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
    [15] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
    [16] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
    [17] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
    [18] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: A comparative analysis,” in Transportation Electrification Conference and Expo (ITEC), pp. 1-6, IEEE, 2014.
    [19] F. Peng, J. Ye and Ali Emadi. “An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8618-8631, 2017.
    [20] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra and I. Garate. “SRM converter topologies for EV application: state of the technology,” Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium on. IEEE, 2017
    [21] S. Mir, I. Husain, and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
    [22] L. G. B. Rolim, W. I. Suemitsu, E. H. Watanable, and R. Hanitsch, “Development of an improved switched reluctance motor drive using a soft-switching converter,” in IEE Proc. Elect. Power Appl., vol. 146, no. 5, pp. 488-494, 1999.
    [23] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” in IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
    [24] D. H. Lee, G. Xu, and J. W. Ahn, “Analysis of passive boost power converter for three-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2961-2971, 2010.
    [25] K. Chimata, N. Hoshi, and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE PEDES, 2012, pp. 1-6.
    [26] C. Gan, J. Wu, Y. Hu, S. Yang, W. Cao, and J. M. Guerrero, “New integrated multilevel converter for switched reluctance motor drive in plug-in hybrid electric vehicles with flexible energy conversion,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3754-3766, May 2017.
    C. SRM Modeling and Dynamic Control
    [27] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
    [28] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
    [29] L. Chenjie, W. Wei, M. McDonough, and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, Feb. 2012.
    [30] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
    [31] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen, and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
    [32] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
    [33] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched- reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, 2016.
    [34] G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. Ind. Appl., 2002, vol. 2, pp. 1212-1218.
    [35] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 381-394, June 2015.
    [36] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-3726, Nov. 2014.
    [37] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
    [38] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
    [39] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
    [40] S. K. Panda, X. M. Zhu, and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
    [41] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    D. Commutation Instant Shifting
    [42] J. J. Gribble, P. C. Kjaer, C. Cossar, and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
    [43] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen, and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
    [44] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [45] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    [46] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
    [47] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
    E. Battery and Supercapacitor
    [48] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005.
    [49] M. Brandl et al., “Batteries and battery management systems for electric vehicles,” in Proc. IEEE DATE, 2012, pp. 971-976.
    [50] O. M. F. Camacho, P. B. Nørgård, N. Rao, and L. M. Popa, “Electrical vehicle batteries testing in a distribution network using sustainable energy,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 1033-1042, March 2014.
    [51] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics- lead acid, nickel based, lead crystal and lithium based batteries,” IEEE UKSIM-AMSS Conf, pp. 444-450, 2015.
    [52] S. Pay and Y. Baghzouz, “Effectiveness of battery-supercapacitor combination in electric vehicles,” in Proc. IEEE Power Tech Conf, Bologna, Italy, Jun. 2003, vol. 3, pp. 1-6.
    [53] A. F. Burke, “Batteries and ultra-capacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007.
    [54] S. Lu, K. A. Corzine, and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, 2007.
    [55] M. B. Camara, H. Galous, F. Gustin, and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles,” IEEE Trans. Veh. Technol., vol.57, no. 5, pp.2721-2735, Sept. 2008.
    [56] M. B. Camara, H. Gualous, F. Gustin, and A. Berthon, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010.
    [57] M. Zandi, A. Payman, J. Martin, S. Pierfederici, B. Davat, and F. Meibody-Tabar, “Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 443-443, Feb. 2011.
    [58] A. Ostadi and S. K. Chen, “Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7.
    [59] A. Tina, M. B. Camara, B. Dakyo, and Y. Azzouz, “DC/DC and DC/AC converters control for hybrid electric vehicles energy management-ultracapacitors and fuel cell,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 686-696, 2013.
    [60] X. Huang, H. Tosiyoki, and H. Yoichi, “System design and converter control for super capacitor and battery hybrid energy system of compact electric vehicles,” in Proc. IEEE ECCE, 2014, pp. 1-10.
    [61] R. E. Araújo, R. d. Castro, C. Pinto, P. Melo, and D. Freitas, “Combined sizing and energy management in EVs with batteries and supercapacitors,” IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3062-3076, Sept. 2014.
    [62] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
    [63] We. Jing, Lai, C. H. Lai, S. H. W. Wong, and M. Li. D, “Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: a review,” IET Renew. Power Gener., vol. 11, no. 4, pp. 461-469, 2017.
    [64] H. Miniguano, A. Barrado, C. Raga, A. Lázaro, C. Fernández and M. Sanz, “A comparative study and parameterization of supercapacitor electrical models applied to hybrid electric vehicles, ”2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Toulouse, 2016, pp. 1-6.
    [65] Nicolas Bertrand, Jocelyn Sabatier, Olivier Briat, and Jean-Michel Vinassa, “Embedded fractional nonlinear supercapacitor model and its parametric estimation method,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3991-4000, 2010.
    [66] Q. Xu, J. Xiao XHu, P. Wang and M. Y. Lee, “A decentralized power management strategy for hybrid energy storage system with autonomous bus voltage restoration and state-of-charge recovery,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7098-7108, 2017.
    [67] D. B. W. Abeywardana, B. Hredzak, V. G. Agelidisand and G. D. Demetriades, “Supercapacitor sizing method for energy-controlled filter-based hybrid energy storage systems,” IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1626-1637, 2017.
    [68] W. Li, and G. Joos, “A power electronic interface for a battery supercapacitor hybrid energy storage system for wind applications,” 2008 IEEE PESC, 2008, pp. 1762-1768.
    [69] U. Manandhar, N. R. Tummuru, S. K. Kollimalla, A. Ukil, G. H. Beng, and K. Chaudhari, “Validation of faster joint control strategy for battery-and supercapacitor-based energy storage system,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3286-3295, April 2018.
    [70] J. Shen and A. Khaligh, “A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 223-231, March 2015.
    [71] M. Zandi, A. Payman, J. P. Martin, S. Pierfederici, B. Davat, and and F. Meibody-Tabar, “Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 433-443, Feb. 2011.
    [72] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 191-200, March 2017.
    F. DC/DC Converters
    [73] F. Caricchi, F. crescimbini, F. G. Capponi, and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
    [74] J. Silvestre, “Half-bridge bidirectional DC-DC converter for small electric vehicle,” in Proc. SPEEDAM, 2008, pp. 884-888.
    [75] K. Okura, T. Nabeshima, T. Sato, K. Nishijima, and H. Yajima, “High efficiency operation for H-bridge DC-DC converter,” IEEE ECCE Asia Conf. Korea. June 2011.
    [76] L. Kumar and S. Jain, “A multiple input dc-dc converter for interfacing of battery/ ultracapacitor in EVs/HEVs/FCVs,” in Proc. IEEE IICPE, 2012, pp. 1-6.
    [77] O. C. Onar, J. Kobayashi, and A. Khaligh, “A fully directional universal power electronic interface for EV, HEV, and PHEV Applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5489-5498, 2013.
    [78] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, Oct. 2013.
    [79] A. Hintz, U. R. Prasanna, and K. Rajashekara, “Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163-3172, May 2015.
    [80] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, July 2015.
    [81] M. McDonough, “Integration of inductively coupled power transfer and hybrid energy storage system: A multiport power electronics interface for battery-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6423-6433, Nov. 2015.
    [82] Y. Du, S. Lukic, B. Jacobson, and A. Huang. “Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” 2011 IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 553-560.
    [83] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, October 2013.
    [84] L. Xie, X. Ruan and Z. Ye, “Reducing common mode noise in phase-shifted full-bridge converter,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 7866-7877, October 2018.
    [85] A. Mallik and A. Khaligh “Variable-switching-frequency state-feedback control of a phase-shifted full-bridge DC/DC converter,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6523-6531, August 2017.
    G. Switch-Mode Rectifiers
    [86] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
    [87] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [88] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
    H. On-Board Charger/G2V
    [89] S. HABIB, M. M. KHAN, F. ABBAS, L. Sang, M. U. Shahid, and H. Tang, “A comprehensive study of implemented international standards, technical challenges, impacts and prospects for Electric Vehicles,” IEEE Access(2018).
    [90] G. R. C. Mouli, P. Venugopal, and P. Bauer. “Future of electric vehicle charging,” 2017 International Symposium on Power Electronics (Ee), 2017, pp. 1-7.
    [91] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
    [92] A. Ahmad, M. S. Alam, and R. Chabaan, “A comprehensive review of wireless charging technologies for electric vehicles.” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 38-63, March 2018.
    [93] C. J. Shin and J. Y. Lee,, “An electrolytic capacitor-less bi-directional EV on-board charger using harmonic modulation technique,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5195-5203, OCTOBER 2014.
    [94] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard chargers,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, March 2017.
    [95] J. G. Pinto, V. Monteiro, H. Goncalves, and J. L. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1104-1116, 2014.
    [96] H. Haga and F. Kurokawa, “Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicle,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2498-2507, April 2017.
    [97] B. Whitaker et al., “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, May 2013.
    [98] S. Haghbin, S. Lundmark, M. Alaküla, and O. Carlson, “An isolated high-power integrated charger in electrified-vehicle applications,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4115-4126, Nov. 2011.
    [99] S. Lacroix, E. Laboure, and M. Hilairet, “An integrated fast battery charger for electric vehicle,” in Proc. IEEE VPPC, 2010, pp. 1-6.
    [100] S. Haghbin et al., “Integrated chargers for EV’s and PHEV’s: Examples and new solutions,” in Proc. ICEM, 2010, pp. 1-6.
    [101] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: Review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
    [102] H. Yihua, S. Xueguan, C. Wenping, and J. Bing, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5722-5731, Oct. 2014.
    [103] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
    [104] S. Haghbin, K. Khan, S. Zhao, M. Alakula, S. Lundmark, and O. Carlson, “An integrated 20-kW motor drive and isolated battery charger for plug-in vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4013-4029, Aug. 2013.
    [105] S. Kim and F. S. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, 2015.
    [106] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
    [107] N. Tashakor, E. Farjah, and T. Ghanbari, “A bidirectional battery charger with modular integrated charge equalization circuit,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2133-2145, March 2017.
    [108] J. G. Pinto, V. Monteiro, H. Gonçalves, B. Exposto, D. Pedrosa, C. Couto, and J. L. Afonso, “Bidirectional battery charger with grid-to-vehicle, vehicle-to-grid and vehicle-to-home technologies,” in Proc. IEEE IECON, 2013, pp. 5934-5939.
    I. V2G/V2H Operations
    [109] B. Kramer, S. Chakraborty, and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
    [110] A. K. Verma, B. Singh, and D. T. Shahani, “Grid to vehicle and vehicle to grid energy transfer using single-phase bidirectional AC-DC converter and bidirectional DC-DC converter,” in Proc. IEEE ICEAS, 2011, pp. 1-5.
    [111] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, 2012.
    [112] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin, and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012.
    [113] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, 2013.
    [114] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, Jun. 2013.
    [115] F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality,” IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 168-176, Aug. 2015.
    [116] F. Berthold, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “PHEV control strategy including vehicle to home (V2H) and home to vehicle (H2V) functionalities,” in Proc. IEEE VPPC, 2011, pp. 1-6.
    [117] M. Kwon and S. Choi, “An electrolytic Capacitorless bidirectional EV charger for V2G and V2H applications,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6792-6799, Sept. 2017.
    [118] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, 2016.
    [119] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, 2013.
    J. Inverters
    [120] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” in IEE Proc. Elect. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
    [121] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [122] B. S. Prasad, S. Jain, and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
    [123] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña, and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
    K. Resonant DC/DC converter
    [124] W. Chen, P. Rong, and Z. Lu, “ Snubberless bidirectional DC-DC converter with new CLLC resonant tank featuring minimized switching loss,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3075-3086, Sep. 2010.
    [125] N. Radimov, R. Orr, and T. K. Gachovska, “Bi-directional CLLC front-end for off-grid battery inverters,” IEEE IHTC., pp. 1-4, 2015.
    [126] W. L. Malan, D. M. Vilathgamuwa, and G. R. Walker, “Modeling and control of a resonant dual active bridge with a tuned CLLC network,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7297-7310, Oct. 2016.
    [127] C. Liu, J. Wang, K. Colombage, C. Gould, and B. Sen, “A CLLC resonant converter based bidirectional EV charger with maximum efficiency tracking,” IET PEMD, pp. 1-6, 2016.
    [128] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015.
    [129] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, April 2013.
    [130] U. Kundu and P. Sensarma, “Gain-Relationship-Based Automatic Resonant Frequency Tracking in Parallel LLC Converter,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 874-883, February 2016.
    [131] H. Wu, X. Zhan, and Y. Xing, “Interleaved LLC resonant converter with hybrid rectifier and variable-frequency plus phase-shift control for wide output voltage range applications,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4246-4257, June 2017.
    [132] C. Liu, X. Xu, D. He, H. Liu, X. Tian, Y. Guo, G. Cai, C. Ma, and G. Mu, “Magnetic-coupling current-balancing cells based input-parallel output-parallel LLC resonant converter modules for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 6968-6979, October 2016.
    [133] C. H. Park, S. H. Cho, J. Jang, S. K. Pidaparthy, T. Ahn, and B. Choi, “Average current mode control for LLC series resonant DC-to-DC converters,” Journal of Power Electronics, vol. 14, No. 1, pp. 40-47, January 2014.
    L. Others
    [134] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June 2009.
    [135] J. J. He, “A battery/supercapacitor powered EV SRM drive with G2V/V2G functions,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2015.
    [136] G. C. He, “On a battery/supercapacitor powered EV SRM drive having G2V/V2G and plug- in energy harvesting capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2016.
    [137] K. Y. Chou, “A batter/supercapacitor powered EV SRM drive with bidirectional isolated charger,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2017.

    QR CODE