研究生: |
林恩玄 Lin, En-Xuan |
---|---|
論文名稱: |
單一成分的硼酸鈷製備及應用於高效率過一硫酸氫鉀之氧化催化 Preparation and Characterization of a single-component cobalt borate as an effective catalyst for PMS oxidation |
指導教授: |
龔佩雲
Keng, Pei-Yuin |
口試委員: |
黃國柱
Haung, Kuo-Chu 陳敬勳 Chen, Ching-Shiun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 105 |
中文關鍵詞: | 高級氧化處理程序 、硼酸鈷 、對硝基苯酚 、抗生素降解 、四環黴素 、磺胺甲噁唑 、廢水處理 、金屬硼酸鹽催化劑 |
外文關鍵詞: | cobalt borate, Co2B2O5, 4-nitrophenol, antibiotic degradation, sulfamethoxazole, metal borate catalyst |
相關次數: | 點閱:53 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於全球人口在近年來增長快速,每天皆會排放大量廢水,如果沒有施加適當的處理,有可能對人類健康造成重大威脅,並可能進而導致淡水短缺。為了適當地處理廢水,許多處理方法應運而生,涵蓋物理、化學等各個面向。儘管物理及化學處理方法實行上相當簡單,但並非始終具成本效益並對環境友好。有時,這些方法有可能無法完全降解汙水,並生成許多副產物需要附加處理。因此,開發合適、廉價且快速的廢水處理技術將是重大挑戰。高級氧化處理程序(AOPs),是新興的汙水處理方法,能夠產生高反應性的硫酸根自由基來降解有機汙染物。其具備高效率,且有利回收利用催化劑,因此近年來逐漸得到廣泛關注。我們的研究團隊為了處理廢水中各種抗生素和其他有機物質,正在開發新的AOPs方法和催化劑。我們正在開發硼酸鈷(Co2B2O5)作為一種單一成分且高效的光化學催化劑,在模擬太陽光照射下激發單過硫酸氫鉀(PMS)降解有機污染物。基於單過硫酸氫鉀的強氧化還原性、鈷的高電位和金屬硼酸鹽的獨特電催化活性,我們研究了硼酸鈷在AOPs中的光化學催化活性,產生硫酸根自由基。硼酸鈷是通過在800°C下鍛燒醋酸鈷四水合物和硼酸混合物12小時製備的。在中性pH條件下,我們發現該催化劑能夠在模擬太陽輻射下激發PMS對50ppm的四環素(TC)、40ppm的4-硝基苯酚(4-NP)和10ppm的磺胺甲噁唑(SMX)進行有效地降解。本研究還表明,硼酸鈷可以在存在氯離子、硝酸根和碳酸鹽等天然有機物質(NOM)的環境下穩定運作。
In recent years, the astonishing amount of wastewater generated daily due to the increasing global population poses a significant risk to human health and may lead to freshwater shortage if left untreated. To properly treat wastewater, various treatment approaches have been developed, covering various aspects including physical and chemical processes. Although physical and chemical treatment methods are straightforward to operate, they are not always cost-effective and environmentally friendly. Sometimes, these methods may not fully remove pollutants from the wastewater and may generate by-products that require further treatment. Therefore, developing suitable, inexpensive, and rapid wastewater treatment is a significant challenge. Advanced oxidation processes (AOPs) are wastewater treatment methods uses highly reactive SO4•- to degrade organic pollutants. AOPs have high efficiency and are favorable for catalyst recovery and reuse, which have received extensive attention. Our research group is developing new AOP catalysts to treat various antibiotics and other organic substances in wastewater. We are developing cobalt borate (Co2B2O5) as a single-component and efficient photocatalyst to deal with organic pollutants that are hardly to be degraded. This photocatalyst activates the oxidant potassium monopersulfate (PMS) under sunlight irradiation. Drawing on the robust oxidation-reduction properties of PMS, the high redox potential of cobalt, and the unique photochemicalcatalytic activity of metal borates, we investigated the PMS oxidation using cobalt borate as a catalyst. The cobalt borate was prepared by calcining a mixture of cobalt acetate tetrahydrate and boric acid at 800°C for 12 hours. The prepared catalyst demonstrated effective degradation 50 ppm of tetracycline (TC), 40 ppm of 4-nitrophenol (4-NP), and 10 ppm of sulfamethoxazole (SMX) under simulated sunlight radiation in neutral pH conditions in 30 minutes. Furthermore, the experiments conducted in this research also demonstrated the reaction activity of Co2B2O5 has nothing to do with the existence of natural organic matter (NOM) such as chloride ions, nitrate ions, and carbonate ions.
1. Zinatloo-Ajabshir, S., Heidari-Asil, S. A. & Salavati-Niasari, M. Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Sep. Purif. Technol. 267, 118667 (2021).
2. Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A. & Agarwal, S. Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. 2, 6380–6388 (2012).
3. Sokolova, E., Simonov, M. & Belov, N. Crystal structure of cadmium pyroborate Cd2B2O5. Sov. Phys. Dokl. (1979).
4. Kawano, T. et al. Synthesis, crystal structure and characterization of iron pyroborate (Fe2B2O5) single crystals. J. Solid State Chem. 182, 2004–2009 (2009).
5. Chen, H. et al. Co2B2O5 as an anode material with high capacity for sodium ion batteries. Rare Met. 39, 1045–1052 (2020).
6. Naidu, R., Arias Espana, V. A., Liu, Y. & Jit, J. Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere 154, 350–357 (2016).
7. Ramírez-Malule, H., Quiñones-Murillo, D. H. & Manotas-Duque, D. Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerg. Contam. 6, 179–193 (2020).
8. Daghrir, R. & Drogui, P. Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 11, 209–227 (2013).
9. Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. Npj Clean Water 2, 1–6 (2019).
10. 2.1 billion people lack safe drinking water at home, more than twice as many lack safe sanitation. https://www.who.int/news/item/12-07-2017-2-1-billion-people-lack-safe-drinking-water-at-home-more-than-twice-as-many-lack-safe-sanitation.
11. Rout, P. R., Zhang, T. C., Bhunia, P. & Surampalli, R. Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 753, 141990 (2021).
12. Gähr, F., Hermanutz, F. & Oppermann, W. OZONATION – AN IMPORTANT TECHNIQUE TO COMPLY WITH NEW GERMAN LAWS FOR TEXTILE WASTEWATER TREATMENT. Water Sci. Technol. 30, 255–263 (1994).
13. Yoon, Y. et al. Application of O3 and O3/H2O2 as post-treatment processes for color removal in swine wastewater from a membrane filtration system. J. Ind. Eng. Chem. 20, 2801–2805 (2014).
14. Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 97, 1061–1085 (2006).
15. Yi, G. et al. Facile chemical blowing synthesis of interconnected N-doped carbon nanosheets coupled with Co3O4 nanoparticles as superior peroxymonosulfate activators for p-nitrophenol destruction: Mechanisms and degradation pathways. Appl. Surf. Sci. 593, 153244 (2022).
16. Krystynik, P. Advanced Oxidation Processes (AOPs) – Utilization of Hydroxyl Radical and Singlet Oxygen. in Reactive Oxygen Species (IntechOpen, 2021). doi:10.5772/intechopen.98189.
17. Paździor, K., Bilińska, L. & Ledakowicz, S. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J. 376, 120597 (2019).
18. Hodges, B. C., Cates, E. L. & Kim, J.-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).
19. Fenton, H. J. H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 65, 899–910 (1894).
20. Babuponnusami, A. & Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2, 557–572 (2014).
21. Hussain, S., Aneggi, E. & Goi, D. Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: a review. Environ. Chem. Lett. 19, 2405–2424 (2021).
22. Soon, A. N. & Hameed, B. H. Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269, 1–16 (2011).
23. Garrido-Ramírez, E. G., Theng, B. K. G. & Mora, M. L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A review. Appl. Clay Sci. 47, 182–192 (2010).
24. Rahim Pouran, S., Abdul Raman, A. A. & Wan Daud, W. M. A. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J. Clean. Prod. 64, 24–35 (2014).
25. De Luca, A., Dantas, R. F. & Esplugas, S. Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Res. 61, 232–242 (2014).
26. Messele, S. A. et al. Effect of activated carbon surface chemistry on the activity of ZVI/AC catalysts for Fenton-like oxidation of phenol. Catal. Today 240, 73–79 (2015).
27. de Barros Lima, A., Falconi, I. B. A., Tenório, J. A. S. & dos Passos Galluzzi Baltazar, M. Xanthate degradation at neutral and basics pH by Cu-Fenton-like process. J. Photochem. Photobiol. Chem. 441, 114678 (2023).
28. Chen, W. et al. Polydopamine-coated carbonized cotton fabrics with β-FeOOH nanorods composites for highly efficient photo-Fenton degradation of organic pollutants. Appl. Surf. Sci. 157955 (2023) doi:10.1016/j.apsusc.2023.157955.
29. Cheng, Y. et al. Review on spinel ferrites-based materials (MFe2O4) as photo-Fenton catalysts for degradation of organic pollutants. Sep. Purif. Technol. 318, 123971 (2023).
30. Wu, Q. et al. Visible-light-driven iron-based heterogeneous photo-Fenton catalysts for wastewater decontamination: A review of recent advances. Chemosphere 313, 137509 (2023).
31. Feng, Y. et al. Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: A novel nonradical oxidation process. J. Hazard. Mater. 354, 63–71 (2018).
32. Xia, X. et al. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front. Chem. 8, (2020).
33. Li, J., Li, Y., Xiong, Z., Yao, G. & Lai, B. The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review. Chin. Chem. Lett. 30, 2139–2146 (2019).
34. Liu, C., Wu, B. & Chen, X. Sulfate radical-based oxidation for sludge treatment: A review. Chem. Eng. J. 335, 865–875 (2018).
35. Yang, W. et al. Enhanced activation of persulfate by nitric acid/annealing modified multi-walled carbon nanotubes via non-radical process. Chemosphere 220, 514–522 (2019).
36. Cai, C., Zhang, H., Zhong, X. & Hou, L. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe–Co/SBA-15 catalyst for the degradation of Orange II in water. J. Hazard. Mater. 283, 70–79 (2015).
37. Li, W. et al. Catalytic degradation of bisphenol A by CoMnAl mixed metal oxides catalyzed peroxymonosulfate: Performance and mechanism. Chem. Eng. J. 279, 93–102 (2015).
38. Chen, Y. et al. Radical generation via sulfite activation on NiFe2O4 surface for estriol removal: Performance and mechanistic studies. Chem. Eng. J. 368, 495–503 (2019).
39. Fernandes, A., Makoś, P. & Boczkaj, G. Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions. J. Clean. Prod. 195, 374–384 (2018).
40. M’Arimi, M. M., Mecha, C. A., Kiprop, A. K. & Ramkat, R. Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review. Renew. Sustain. Energy Rev. 121, 109669 (2020).
41. Wacławek, S. et al. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 330, 44–62 (2017).
42. Amirache, L. et al. Cobalt sulfide-reduced graphene oxide: An efficient catalyst for the degradation of rhodamine B and pentachlorophenol using peroxymonosulfate. J. Environ. Chem. Eng. 9, 106018 (2021).
43. Hu, P. & Long, M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 181, 103–117 (2016).
44. Göltz, M. et al. Influence of In-Situ Electrochemical Oxidation on Implant Surface and Colonizing Microorganisms Evaluated by Scanning Electron Microscopy. Mater. Basel Switz. 12, 3977 (2019).
45. Zhang, K. & Parker, K. M. Halogen Radical Oxidants in Natural and Engineered Aquatic Systems. Environ. Sci. Technol. 52, 9579–9594 (2018).
46. Lee, J., von Gunten, U. & Kim, J.-H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environ. Sci. Technol. 54, 3064–3081 (2020).
47. Sonawane, S., Rayaroth, M. P., Landge, V. K., Fedorov, K. & Boczkaj, G. Thermally activated persulfate-based Advanced Oxidation Processes — recent progress and challenges in mineralization of persistent organic chemicals: a review. Curr. Opin. Chem. Eng. 37, 100839 (2022).
48. Zhou, L., Yang, X., Ji, Y. & Wei, J. Sulfate radical-based oxidation of the antibiotics sulfamethoxazole, sulfisoxazole, sulfathiazole, and sulfamethizole: The role of five-membered heterocyclic rings. Sci. Total Environ. 692, 201–208 (2019).
49. Zhao, D. et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J. Hazard. Mater. 254–255, 228–235 (2013).
50. Wang, J. & Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 334, 1502–1517 (2018).
51. Yang, S. et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater. 179, 552–558 (2010).
52. Yang, Q. et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 378, 122149 (2019).
53. Ao, X. et al. Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation: Kinetics, mechanism, and genotoxicity. Chem. Eng. J. 345, 87–97 (2018).
54. Guo, R. et al. Construction of Ag3PO4/TiO2 nano-tube arrays photoelectrode and its enhanced visible light driven photocatalytic decomposition of diclofenac. Sep. Purif. Technol. 200, 44–50 (2018).
55. Nasseri, S. et al. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix. J. Mol. Liq. 241, 704–714 (2017).
56. Deng, D. et al. Efficient chemical oxidation of high levels of soil-sorbed phenanthrene by ultrasound induced, thermally activated persulfate. Chem. Eng. J. 265, 176–183 (2015).
57. Matzek, L. W. & Carter, K. E. Activated persulfate for organic chemical degradation: A review. Chemosphere 151, 178–188 (2016).
58. Qi, C. et al. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants. Chemosphere 151, 280–288 (2016).
59. Crimi, M. L. & Taylor, J. Experimental Evaluation of Catalyzed Hydrogen Peroxide and Sodium Persulfate for Destruction of BTEX Contaminants. Soil Sediment Contam. Int. J. 16, 29–45 (2007).
60. Xu, J., Yu, H. & Guo, H. Synthesis and behaviors of g-C3N4 coupled with LaxCo3-xO4 nanocomposite for improved photocatalytic activeity and stability under visible light. Mater. Res. Bull. 105, 342–348 (2018).
61. Nuengmatcha, P. et al. Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst. Water Sci. Eng. (2023) doi:10.1016/j.wse.2023.01.004.
62. Roy, D., Kumar, P., Soni, A. & Nemiwal, M. A versatile and microporous Zn-based MOFs as a recyclable and sustainable heterogeneous catalyst for various organic transformations: A review (2015-present). Tetrahedron 133408 (2023) doi:10.1016/j.tet.2023.133408.
63. Dong, C. et al. Fe-Ti bimetals catalyst derived from biowaste for highly efficient persulfate activation: Performance and mechanisms. Process Saf. Environ. Prot. 168, 654–667 (2022).
64. Qian, H. et al. Efficient metal borate catalysts for oxidative dehydrogenation of propane. Catal. Sci. Technol. 12, 1996–2005 (2022).
65. Zhou, D., Chen, L., Li, J. & Wu, F. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: A state-of-the-art minireview. Chem. Eng. J. 346, 726–738 (2018).
66. Guo, R.-F., Liang, P., Li, X.-Y. & Liu, Z.-H. Fabrication of a dual Z-scheme GACN/NiO/Ni3(BO3)2 composite with excellent photocatalytic activity for methylene blue and tetracycline removal. Sep. Purif. Technol. 264, 118414 (2021).
67. Rawool, S. A. et al. pn Heterojunctions in NiO:TiO2 composites with type-II band alignment assisting sunlight driven photocatalytic H2 generation. Appl. Catal. B Environ. 221, 443–458 (2018).
68. Yuan, J. et al. Synthesis of Indium Borate and Its Application in Photodegradation of 4-Chlorophenol. Environ. Sci. Technol. 46, 2330–2336 (2012).
69. Li, T. et al. Bimetallic (Cu, Zn) ZIF-derived S-scheme heterojunction for efficient remediation of aqueous pollutants in visible light/peroxymonosulfate system. Appl. Catal. B Environ. 330, 122539 (2023).
70. Song, H. et al. MXene-mediated electron transfer in Cu(II)/PMS process: From Cu(III) to Cu(I). Sep. Purif. Technol. 297, 121428 (2022).
71. Westerhoff, P., Aiken, G., Amy, G. & Debroux, J. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res. 33, 2265–2276 (1999).
72. Dai, Y. et al. A review on pollution situation and treatment methods of tetracycline in groundwater. Sep. Sci. Technol. 55, 1005–1021 (2020).
73. Anderson, C. R., Rupp, H. S. & Wu, W.-H. Complexities in tetracycline analysis—chemistry, matrix extraction, cleanup, and liquid chromatography. J. Chromatogr. A 1075, 23–32 (2005).
74. Parolo, M. E., Avena, M. J., Pettinari, G. R. & Baschini, M. T. Influence of Ca2+ on tetracycline adsorption on montmorillonite. J. Colloid Interface Sci. 368, 420–426 (2012).
75. Parolo, M. E., Savini, M. C., Vallés, J. M., Baschini, M. T. & Avena, M. J. Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl. Clay Sci. 40, 179–186 (2008).
76. Roberts, M. C. Tetracycline therapy: update. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 36, 462–467 (2003).
77. Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. MMBR 65, 232-260 ; second page, table of contents (2001).
78. López Peñalver, J. J., Gómez Pacheco, C. V., Sánchez Polo, M. & Rivera Utrilla, J. Degradation of tetracyclines in different water matrices by advanced oxidation/reduction processes based on gamma radiation. J. Chem. Technol. Biotechnol. 88, 1096–1108 (2013).
79. Li, J. J., Cao, Y., Young, M. R. & Colburn, N. H. Induced expression of dominant-negative c-jun downregulates NFkappaB and AP-1 target genes and suppresses tumor phenotype in human keratinocytes. Mol. Carcinog. 29, 159–169 (2000).
80. Gao, P., Ding, Y., Li, H. & Xagoraraki, I. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes. Chemosphere 88, 17–24 (2012).
81. Pan, X., Qiang, Z., Ben, W. & Chen, M. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere 84, 695–700 (2011).
82. Mokrini, F., Waeyenberge, L., Viaene, N. & Moens, M. First Report of the Cereal Cyst Nematode Heterodera latipons on Wheat in Morocco. Plant Dis. 96, 774–774 (2012).
83. Orwa, J. D., Matofari, J. W., Muliro, P. S. & Lamuka, P. Assessment of sulphonamides and tetracyclines antibiotic residue contaminants in rural and peri urban dairy value chains in Kenya. Int. J. Food Contam. 4, 5 (2017).
84. Jiao, S., Zheng, S., Yin, D., Wang, L. & Chen, L. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere 73, 377–382 (2008).
85. Fu-dao, Z. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots. Plant Nutr. Fertil. Sci. (2005).
86. Sánchez, A. R., Rogers, R. S. & Sheridan, P. J. Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity. Int. J. Dermatol. 43, 709–715 (2004).
87. Tetracycline and toxicity induced. Gastroenterol. Hepatol. Open Access Volume 10, (2019).
88. Spongberg, A. L. & Witter, J. D. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Sci. Total Environ. 397, 148–157 (2008).
89. Karthikeyan, K. G. & Meyer, M. T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment vol. 361 196207 (2006).
90. Zhou, Y., Zhang, L. & Cheng, Z. Removal of organic pollutants from aqueous solution using agricultural wastes: A review. J. Mol. Liq. 212, 739–762 (2015).
91. Rivera-Utrilla, J., Gómez-Pacheco, C. V., Sánchez-Polo, M., López-Peñalver, J. J. & Ocampo-Pérez, R. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. J. Environ. Manage. 131, 16–24 (2013).
92. Haider, K., Frederick, L. R. & Flaig, W. Reactions between amino acid compounds and phenols during oxidation. Plant Soil 22, 49–64 (1965).
93. Kocaçalişkan, I., Talan, I. & Terzi, I. Antimicrobial activity of catechol and pyrogallol as allelochemicals. Z. Naturforschung C J. Biosci. 61, 639–642 (2006).
94. Chen, H. et al. Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. Sci. Total Environ. 408, 1043–1049 (2010).
95. Camboim Rockett, F. et al. Phenolic compounds and antioxidant activity in vitro and in vivo of Butia and Opuntia fruits. Food Res. Int. 137, 109740 (2020).
96. Kang, H., Lee, J. P. & Choi, K. Exposure to phthalates and environmental phenols in association with chronic kidney disease (CKD) among the general US population participating in multi-cycle NHANES (2005-2016). Sci. Total Environ. 791, 148343 (2021).
97. R. Albuquerque, B., A. Heleno, S., P. Oliveira, M. B. P., Barros, L. & R. Ferreira, I. C. F. Phenolic compounds: current industrial applications, limitations and future challenges. Food Funct. 12, 14–29 (2021).
98. Patzke, H. & Schieber, A. Growth-inhibitory activity of phenolic compounds applied in an emulsifiable concentrate - ferulic acid as a natural pesticide against Botrytis cinerea. Food Res. Int. Ott. Ont 113, 18–23 (2018).
99. Mei, Q. et al. Theoretical insight into the degradation of p-nitrophenol by OH radicals synergized with other active oxidants in aqueous solution. J. Hazard. Mater. 389, 121901 (2020).
100. Callahan, M. A. & United States. Water-related environmental fate of 129 priority pollutants. (Office of Water Planning and Standards, Office of Water and Waste Management, U.S. Environmental Protection Agency, 1979).
101. Kameni, A. P. W., Tcheumi, H. L., Tonle, I. K. & Ngameni, E. Sensitive electrochemical detection of methyl parathion in the presence of para-nitrophenol on a glassy carbon electrode modified by a functionalized NiAl-layered double hydroxide. Comptes Rendus Chim. 22, 22–33 (2019).
102. Yang, J. et al. Long-acting removal of high-toxic p-nitrophenol in wastewater via peroxymonosulfate activation by cyclic membrane catalysis. J. Clean. Prod. 401, 136739 (2023).
103. Rabi-Stanković, A. A. et al. Electrooxidation of p-nitrophenol on organobentonite modified electrodes. Appl. Clay Sci. 77–78, 61–67 (2013).
104. Chen, P. et al. Highly sensitive detection of 4-NP in real water with long stability and high anti-inteference ability based on GO–Ag2CrO4/GCE. J. Taiwan Inst. Chem. Eng. 97, 128–136 (2019).
105. Zhao, R. et al. Efficient removal of phenol and p-nitrophenol using nitrogen-doped reduced graphene oxide. Colloids Surf. Physicochem. Eng. Asp. 611, 125866 (2021).
106. Banou, M. et al. Fabrication of graphene nanoplatelets/MgAl-layered double hydroxide nanocomposites as efficient support for gold nanoparticles and their catalytic performance in 4-nitrophenol reduction. Process Saf. Environ. Prot. 174, 891–900 (2023).
107. Severo, L. S. et al. 3D graphene sponge biomass-derived with high surface area applied as adsorbent for nitrophenols. J. Environ. Chem. Eng. 11, 109924 (2023).
108. Mondal, S. & Malakar, S. Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances. Tetrahedron 76, 131662 (2020).
109. Masters, P. A., O’Bryan, T. A., Zurlo, J., Miller, D. Q. & Joshi, N. Trimethoprim-sulfamethoxazole revisited. Arch. Intern. Med. 163, 402–410 (2003).
110. Rostamian, R. & Behnejad, H. A comparative adsorption study of sulfamethoxazole onto graphene and graphene oxide nanosheets through equilibrium, kinetic and thermodynamic modeling. Process Saf. Environ. Prot. 102, 20–29 (2016).
111. Wu, Y. et al. Multimedia fate of sulfamethoxazole (SMX) in a water-scarce city by coupling fugacity model and HYDRUS-1D model. Sci. Total Environ. 881, 163331 (2023).
112. Sarker, P. et al. Evaluation of the adsorption of sulfamethoxazole (SMX) within aqueous influents onto customized ordered mesoporous carbon (OMC) adsorbents: Performance and elucidation of key adsorption mechanisms. Chem. Eng. J. 454, 140082 (2023).
113. Eliopoulos, G. M. & Huovinen, P. Resistance to Trimethoprim-Sulfamethoxazole. Clin. Infect. Dis. 32, 1608–1614 (2001).
114. Index of /foodsafety/news. http://nehrc.nhri.org.tw/foodsafety/news/.
115. Michael, I. et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 47, 957–995 (2013).
116. Bendz, D., Paxéus, N. A., Ginn, T. R. & Loge, F. J. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J. Hazard. Mater. 122, 195–204 (2005).
117. Al Aukidy, M., Verlicchi, P., Jelic, A., Petrovic, M. & Barcelò, D. Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci. Total Environ. 438, 15–25 (2012).
118. Yoon, Y., Ryu, J., Oh, J., Choi, B.-G. & Snyder, S. A. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 408, 636–643 (2010).
119. Daughton, C. G. & Ternes, T. A. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ. Health Perspect. 107 Suppl 6, 907–938 (1999).
120. Oh, W.-D., Chang, V. W. C., Hu, Z.-T., Goei, R. & Lim, T.-T. Enhancing the catalytic activity of g-C3N4 through Me doping (Me=Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process. Chem. Eng. J. 323, 260–269 (2017).
121. Chen, X., Chen, J., Qiao, X., Wang, D. & Cai, X. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B Environ. 80, 116–121 (2008).
122. Anipsitakis, G. P., Stathatos, E. & Dionysiou, D. D. Heterogeneous Activation of Oxone Using Co3O4. J. Phys. Chem. B 109, 13052–13055 (2005).
123. Barceloux, D. G. & Barceloux, D. Cobalt. J. Toxicol. Clin. Toxicol. 37, 201–216 (1999).
124. Su, S., Guo, W., Leng, Y., Yi, C. & Ma, Z. Heterogeneous activation of Oxone by CoxFe3−xO4 nanocatalysts for degradation of rhodamine B. J. Hazard. Mater. 244–245, 736–742 (2013).
125. Sankar Devi, V. et al. Facile sol-gel derived nanostructured spinel Co3O4 as electrode material for high-performance supercapattery and lithium-ion storage. J. Energy Storage 25, 100815 (2019).
126. Lai, T.-L., Lai, Y.-L., Lee, C.-C., Shu, Y.-Y. & Wang, C.-B. Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol. Catal. Today 131, 105–110 (2008).
127. Mulinari, T. A. et al. Microwave-hydrothermal synthesis of single-crystalline Co3O4 spinel nanocubes. CrystEngComm 15, 7443–7449 (2013).
128. Cui, L., Li, J. & Zhang, X.-G. Preparation and properties of Co3O4 nanorods as supercapacitor material. J. Appl. Electrochem. 39, 1871–1876 (2009).
129. Wang, A. et al. In situ N-doped carbon-coated mulberry-like cobalt manganese oxide boosting for visible light driving photocatalytic degradation of pharmaceutical pollutants. Chem. Eng. J. 411, 128497 (2021).
130. Wang, Q. et al. Two-dimensional ultrathin perforated Co3O4 nanosheets enhanced PMS-Activated selective oxidation of organic micropollutants in environmental remediation. Chem. Eng. J. 427, 131953 (2022).
131. Zhou, J., Yang, X., Wei, Q., Lan, Y. & Guo, J. Co3O4 anchored on biochar derived from chitosan (Co3O4@BCC) as a catalyst to efficiently activate peroxymonosulfate (PMS) for degradation of phenacetin. J. Environ. Manage. 327, 116895 (2023).
132. Radich, E. J., Krenselewski, A. L., Zhu, J. & Kamat, P. V. Is Graphene a Stable Platform for Photocatalysis? Mineralization of Reduced Graphene Oxide With UV-Irradiated TiO2 Nanoparticles. Chem. Mater. 26, 4662–4668 (2014).
133. Yang, Q., Choi, H., Al-Abed, S. R. & Dionysiou, D. D. Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl. Catal. B Environ. 88, 462–469 (2009).
134. Jin Kim, S., Wha Lee, S., Yong An, S. & Kim, C. S. Mössbauer studies of superexchange interactions and atomic migration in CoFe2O4. J. Magn. Magn. Mater. 215–216, 210–212 (2000).
135. Sadri, F. et al. Magnetic CoFe2O4 Nanoparticles as an Efficient Catalyst for the Oxidation of Alcohols to Carbonyl Compounds in the Presence of Oxone as an Oxidant. Bull. Korean Chem. Soc. 35, 2029–2032 (2014).
136. Li, Y. et al. Highly efficient degradation of sulfamethoxazole (SMX) by activating peroxymonosulfate (PMS) with CoFe2O4 in a wide pH range. Sep. Purif. Technol. 276, 119403 (2021).
137. Hou, J. et al. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. Sci. Total Environ. 770, 145311 (2021).
138. Hu, L. et al. Cobalt with porous carbon architecture: Towards of 4-nitrophenol degradation and reduction. Sep. Purif. Technol. 288, 120595 (2022).
139. Tao, Y. et al. Metal-free activation of peroxymonosulfate by g-C3N4 under visible light irradiation for the degradation of organic dyes. RSC Adv. 5, 44128–44136 (2015).
140. Gong, Y. et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation. Appl. Catal. B Environ. 233, 35–45 (2018).
141. Wang, L., Guo, X., Chen, Y., Ai, S. & Ding, H. Cobalt-doped g-C3N4 as a heterogeneous catalyst for photo-assisted activation of peroxymonosulfate for the degradation of organic contaminants. Appl. Surf. Sci. 467–468, 954–962 (2019).
142. Luo, R. et al. Convenient synthesis and engineering of ultrafine Co 3 O 4 -incorporated carbon composite: towards practical application of environmental remediation. J. Mater. Chem. A 6, 3454–3461 (2018).
143. Jiang, Z.-R. et al. Co3O4-MnO2 nanoparticles moored on biochar as a catalyst for activation of peroxymonosulfate to efficiently degrade sulfonamide antibiotics. Sep. Purif. Technol. 281, 119935 (2022).
144. He, P. et al. Expeditious degradation of SMX by high-valent cobalt-oxo species derived from cobalt-doped C3N5-activated peroxymonosulfate with the assistance of visible light. Sep. Purif. Technol. 301, 122009 (2022).
145. Hu, L., Yang, X. & Dang, S. An easily recyclable Co/SBA-15 catalyst: Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Appl. Catal. B Environ. 102, 19–26 (2011).
146. Liu, H. et al. Carbon-doped Co3O4-MgO catalyzed peroxymonosulfate activation via an enhanced Co(III)/Co(II) cycle for rapid chloramphenicol degradation. Chem. Eng. J. 461, 142115 (2023).
147. Chen, Q., Ji, F., Guo, Q., Fan, J. & Xu, X. Combination of heterogeneous Fenton-like reaction and photocatalysis using Co–TiO2 nanocatalyst for activation of KHSO5 with visible light irradiation at ambient conditions. J. Environ. Sci. 26, 2440–2450 (2014).
148. Liang, H. et al. Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution. J. Colloid Interface Sci. 372, 58–62 (2012).
149. Bronson, A. & Pierre, G. R. St. The sulfide capacities of CaO-SiO2 melts containing MgO, FeO, TiO2, and Al2O3. Metall. Trans. B 12, 729–731 (1981).
150. Stoyanova, M., Slavova, I., Christoskova, St. & Ivanova, V. Catalytic performance of supported nanosized cobalt and iron–cobalt mixed oxides on MgO in oxidative degradation of Acid Orange 7 azo dye with peroxymonosulfate. Appl. Catal. Gen. 476, 121–132 (2014).
151. Zhang, W. et al. Supported cobalt oxide on MgO: Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal. B Environ. 95, 93–99 (2010).
152. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).
153. Zhao, D., Huo, Q., Feng, J., Chmelka, B. F. & Stucky, G. D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 120, 6024–6036 (1998).
154. Zhao, D. et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 279, 548–552 (1998).
155. Chang, L. et al. Modulating the electronic structure of Co center via MgO@C co-doping for PMS activation to remove levofloxacin. Sep. Purif. Technol. 321, 124151 (2023).
156. Dastafkan, K., Li, Y., Zeng, Y., Han, L. & Zhao, C. Enhanced surface wettability and innate activity of an iron borate catalyst for efficient oxygen evolution and gas bubble detachment. J. Mater. Chem. A 7, 15252–15261 (2019).
157. Meng, Y., Ni, G., Jin, X., Peng, J. & Yan, Q. Y. Recent advances in the application of phosphates and borates as electrocatalysts for water oxidation. Mater. Today Nano 12, 100095 (2020).
158. Ren, W. et al. Hydroxyl radical dominated elimination of plasticizers by peroxymonosulfate on metal-free boron: Kinetics and mechanisms. Water Res. 186, 116361 (2020).
159. Xie, H. et al. A novel double anion layered photocatalyst Pb4(BO3)2SO4 with enhanced photocatalytic performance for antibiotic degradation. Chem. Eng. J. 429, 132344 (2022).
160. Chen, Z. et al. Effect of borate buffer on organics degradation with unactivated peroxymonosulfate: Influencing factors and mechanisms. Sep. Purif. Technol. 256, 117841 (2021).
161. Huang, B. et al. Ultrafast degradation of contaminants in a trace cobalt(II) activated peroxymonosulfate process triggered through borate: Indispensable role of intermediate complex. J. Hazard. Mater. 424, 127641 (2022).
162. Berger, S. V., Hassel, O., Webb, M. & Rottenberg, M. The Crystal Structure of Cobaltpyroborate. Acta Chem. Scand. 4, 1054–1065 (1950).
163. Ozerova, A. M. et al. Cobalt borate catalysts for hydrogen production via hydrolysis of sodium borohydride. J. Alloys Compd. 513, 266–272 (2012).
164. Kryuchkova, N. A., Коstin, G. А., Korotaev, E. V. & Kalinkin, A. V. XPS and quantum chemical investigation of electronic structure of Co complexes with calix[4]arenes modified by R2PO groups in upper or lower rim. J. Electron Spectrosc. Relat. Phenom. 229, 114–123 (2018).
165. Qin, Q., Zhang, J. & Dong, Y. Carbon felt supported cobalt oxide: An easily recyclable catalyst for efficient peroxymonosulfate activation. Mater. Lett. 335, 133833 (2023).
166. Khiem, T. C. et al. Templating agent-mediated Cobalt oxide encapsulated in Mesoporous silica as an efficient oxone activator for elimination of toxic anionic azo dye in water: Mechanistic and DFT-assisted investigations. Chemosphere 313, 137309 (2023).
167. Abdelghany, A. M., ElBatal, F. H., ElBatal, H. A. & EzzElDin, F. M. Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation-a comparative study. J. Mol. Struct. 1074, 503–510 (2014).
168. Kipcak, A. S., Yildirim, M., Aydin Yuksel, S., Moroydor Derun, E. & Piskin, S. The Synthesis and Physical Properties of Magnesium Borate Mineral of Admontite Synthesized from Sodium Borates. Adv. Mater. Sci. Eng. 2014, 1–9 (2014).
169. Gumus, O. Y., Unal, H. I., Erol, O. & Sari, B. Synthesis, characterization, and colloidal properties of polythiophene/borax conducting composite. Polym. Compos. 32, 418–426 (2011).
170. Jang, H. T., Jung, E. M., Park, S. H. & Hemalatha, P. Synthesis and Characterization of CoO-ZnO Catalyst System for Selective CO Oxidation. Int. J. Control Autom. 6, 31–40 (2013).
171. Mohammadi, S. Z., Lashkari, B. & Khosravan, A. Green synthesis of Co3O4 nanoparticles by using walnut green skin extract as a reducing agent by using response surface methodology. Surf. Interfaces 23, 100970 (2021).
172. Narayanan, R. K. & Devaki, S. J. Brawny Silver-Hydrogel Based Nanocatalyst for Reduction of Nitrophenols: Studies on Kinetics and Mechanism. Ind. Eng. Chem. Res. 54, 1197–1203 (2015).
173. Ren, X. et al. Highly efficient catalytic hydrogenation of nitrophenols by sewage sludge derived biochar. Water Res. 201, 117360 (2021).
174. Xue, X., Hanna, K., Abdelmoula, M. & Deng, N. Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations. Appl. Catal. B Environ. 89, 432–440 (2009).
175. Bandal, G., Watwe, V., Kulkarni, S. & Kulkarni, P. Effect of addition of surfactant on physicochemical properties of cobalt oxide nanoparticles synthesised using a domestic microwave: Applications as photocatalyst and supercapacitor. Optik 278, 170743 (2023).
176. Zubir, N. A., Yacou, C., Zhang, X. & Diniz da Costa, J. C. Optimisation of graphene oxide–iron oxide nanocomposite in heterogeneous Fenton-like oxidation of Acid Orange 7. J. Environ. Chem. Eng. 2, 1881–1888 (2014).
177. Wang, L. et al. High yield M-BTC type MOFs as precursors to prepare N-doped carbon as peroxymonosulfate activator for removing sulfamethazine: The formation mechanism of surface-bound SO4•- on Co-Nx site. Chemosphere 295, 133946 (2022).
178. Xu, L. & Wang, J. Magnetic Nanoscaled Fe3O4/CeO2 Composite as an Efficient Fenton-Like Heterogeneous Catalyst for Degradation of 4-Chlorophenol. Environ. Sci. Technol. 46, 10145–10153 (2012).
179. Neta, P., Huie, R. E. & Ross, A. B. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 17, 1027–1284 (1988).
180. Lian, L. et al. Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents. Environ. Sci. Technol. 51, 2954–2962 (2017).
181. Wu, Z. et al. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways. Water Res. 104, 272–282 (2016).
182. Fang, J., Fu, Y. & Shang, C. The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System. Environ. Sci. Technol. 48, 1859–1868 (2014).
183. Qin, J., Liu, X., Zhong, S., Tian, K. & Zhang, J. Amorphous CoxOy with nano-flake structure for activated persulfate degradation of p-nitrophenol. J. Water Process Eng. 47, 102776 (2022).
184. Clifton, C. L. & Huie, R. E. Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4−. Alcohols. Int. J. Chem. Kinet. 21, 677–687 (1989).
185. Norman, R. O. C., Storey, P. M. & West, P. R. Electron spin resonance studies. Part XXV. Reactions of the sulphate radical anion with organic compounds. J. Chem. Soc. B Phys. Org. 1087–1095 (1970) doi:10.1039/J29700001087.
186. Huie, R. E. & Clifton, C. L. Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4−. Alkanes and ethers. Int. J. Chem. Kinet. 21, 611–619 (1989).
187. Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988).
188. Criquet, J. & Leitner, N. K. V. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere 77, 194–200 (2009).
189. Huang, H., He, Y., Lin, Z., Kang, L. & Zhang, Y. Two Novel Bi-Based Borate Photocatalysts: Crystal Structure, Electronic Structure, Photoelectrochemical Properties, and Photocatalytic Activity under Simulated Solar Light Irradiation. J. Phys. Chem. C 117, 22986–22994 (2013).
190. Gupta, S., Patel, M. K., Miotello, A. & Patel, N. Metal Boride-Based Catalysts for Electrochemical Water-Splitting: A Review. Adv. Funct. Mater. 30, 1906481 (2020).
191. Bacha, A.-U.-R. et al. Photoelectrocatalytic degradation of endocrine-disruptor bisphenol – A with significantly activated peroxymonosulfate by Co-BiVO4 photoanode. Chem. Eng. J. 389, 124482 (2020).
192. Boreen, A. L., Arnold, W. A. & McNeill, K. Photochemical Fate of Sulfa Drugs in the Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environ. Sci. Technol. 38, 3933–3940 (2004).
193. Martinez, L. J., Sik, R. H. & Chignell, C. F. Fluoroquinolone Antimicrobials: Singlet Oxygen, Superoxide and Phototoxicity. Photochem. Photobiol. 67, 399–403 (1998).
194. Arnold, W. A. et al. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants. Environ. Sci. Process. Impacts 19, 324–338 (2017).
195. Giannakis, S., Lin, K.-Y. A. & Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 406, 127083 (2021).
196. Du, W. et al. Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation. Appl. Catal. B Environ. 262, 118302 (2020).
197. Zhang, J. et al. Experimental and DFT insights into the visible-light driving metal-free C3N5 activated persulfate system for efficient water purification. Appl. Catal. B Environ. 289, 120023 (2021).