研究生: |
陳家峻 Chen, Chia-Chun |
---|---|
論文名稱: |
Bi-Sb-Se-Te 熱電材料系統相圖 Phase diagrams of thermoelectric Bi-Sb-Se-Te system |
指導教授: |
陳信文
Chen, Sinn-Wen |
口試委員: |
陳志銘
Chen, Chih-Ming 衛子健 Wei, Tzu-Chien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 178 |
中文關鍵詞: | Bi-Sb-Se-Te 、熱電材料 、相圖 、液相線投影圖 |
外文關鍵詞: | Bi-Sb-Se-Te, thermoelectric, phasediagram, liquidusprojection |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Bi-Sb-Se-Te四元系統有相當好的熱電應用,Bi2Te3、Sb2Te3等材料已於商業上使用一段時間,研究指出當Bi2Te3、Sb2Te3參雜Se能有效地提升熱電性質。相圖能提供相平衡資訊,是相當重要的基礎知識,我們可以透過實驗方法或是Calphad計算來得到相圖。本研究將以實驗方法來建構Bi-Sb-Se-Te及其相關子系統的相圖。
此四元系統有六個二元子系統,分別為Bi-Sb, Bi-Se, Bi-Te, Sb-Se, Sb-Te 和Se-Te,以及四個三元子系統,Bi-Sb-Se, Bi-Sb-Te, Bi-Se-Te 和 Sb-Se-Te.。六個二元子系統資料將從文獻中獲得,Sb-Se-Te的三元系統相圖已有資料,本研究將根據文獻中可使用的二元相圖,以及實驗結果來建構出餘下的三個三元系統相圖。探討的溫度選定250℃及400℃。
本研究以純元素鉍、銻、硒、碲配置不同組成比例的三元Bi-Sb-Se、Bi-Sb-Te、Bi-Se-Te與Sb-Se-Te合金,並以SEM(Scanning Electron Microscopy)、EPMA(Electron Probe Microanalysis)與XRD(X-ray Diffraction)進行樣品的微結構分析、組成分析與相鑑定。根據所得到的實驗結果,以及二元系統相圖邊界,來建構出三元系統的相圖。
Bi-Sb-Se三元系統液相線投影圖中,Bi-Sb二元系統為完全互溶,邊界上沒有二元相;Sb-Se二元系統邊界上有一Sb2Se3二元相;Bi-Se二元系統中有一Bi2Se3二元相,以及一系列複雜的介金屬相,統合為(Bi2)m(Bi2Se3)n相。實驗結果並沒有發現三元相的出現。此系統有四個首要析出區,分別為Bi2Se3、Sb2Se3、(Bi2)m(Bi2Se3)n、(Bi,Sb)。
Bi-Sb-Se 400℃等溫橫截面圖中,發現一三元相Bi35Sb40Se25,此三元系統有六個tie-triangles,分別為Liquid+(Bi,Sb)+ Bi35Sb40Se25、Bi35Sb40Se25+Liquid+(Bi2)m(Bi2Se3)n、Bi35Sb40Se25+(Bi2)m(Bi2Se3)n +Sb2Se3、Bi2Se3+Sb2Se3+(Bi2)m(Bi2Se3)n 、 Sb2Se3+(Bi,Sb)+ Bi35Sb40Se25以及Bi2Se3+Sb2Se3+Liquid(Se)。
Bi-Sb-Te 400℃等溫橫截面相圖中,沒有發現三元相,有四個tie-triangles,分別為Liquid+(Bi,Sb)+ δ-(Sb2Te) 、Liquid+δ-(Sb2Te)+ (Bi2)m(Bi2Te3)n、δ-(Sb2Te)+ γ-(SbTe)+ (Bi2)m(Bi2Te3)n以及 (Bi2)m(Bi2Te3)n+ γ-(SbTe)+(Bi,Sb)2Te3。
Bi-Se-Te 400℃等溫橫截面相圖中,未發現三元相,在Bi-Se及Bi-Te二元系統中的複雜二元相群,簡化成Bi2Se3、(Bi2)m(Bi2Se3)n及Bi2Te3、(Bi2)m(Bi2Te3)n。而Bi2Se3與Bi2Te3在400℃會完全互溶成Bi2(Se,Te)3 相;(Bi2)m(Bi2Se3)n及(Bi2)m(Bi2Te3)n兩者在400℃ 完全互溶,生成(Bi2)m(Bi2(Se,Te)3)n 相。在400℃的Bi-Se-Te等溫橫截面圖,有Bi2(Se,Te)3+Liquid+(Se,Te)一個三相區。
Sb-Se-Te 250℃等溫橫截面圖中,沒有三元相的生成,此三元系統具有五個tie-triangles,分別為Sb2Se3+δ-Sb2Te+Sb、Sb2Te3+Sb2Se3+(Se,Te) 、 Sb2Se3+ δ-(Sb2Te)+ γ-(SbTe) 、 Sb2Se3+Sb2Te3+ γ-(SbTe) 以及Sb2Se3+Liquid+(Se,Te)。
定40%Bi 400℃的Bi-Sb-Se-Te的等值剖面圖,目前已完成了(Bi2)m(Bi2(Se,Te)3)n 單相區及(Bi2)m(Bi2(Se,Te)3)n+Bi2(Se,Te)3兩相區。
Bi-Sb-Se-Te quaternary system has high thermoelectric application interests. The materials Bi2Te3and Sb2Te3 are commercially utilized for a while. Literatures results have indicated that their thermoelectric properties could be improved with selenium doping Phase diagrams provide phase equilibria data which are fundamentally important. Phase diagrams can be determined by experimental measurements and by Calphad-type caBITLPulation. This study determine the phase diagrams of Bi-Sb-Se-Te and its constituent systems plans by experimental method.
The quaternary system has six constituent binary systems, Bi-Sb, Bi-Se, Bi-Te, Sb-Se, Sb-Te and Se-Te and four constituent ternary systems, Bi-Sb-Se, Bi-Sb-Te, Bi-Se-Te and Sb-Se-Te. The phase diagrams of all the six constituent binary systems are adopted directly from those results which are available in the literatures with proper assessment. The phase diagram of Sb-Se-Te ternary system has been done. This study builds the other ternary system phase diagrams based on binary phase and experimental results. The examined temperature in this study is 250℃ and 400℃.
This study uses Bi、Sb、Se and Te elements to prepare different atomic percentage ternary Bi-Sb-Se、Bi-Sb-Te、Bi-Se-Te and Sb-Se Te alloy. The microstructures, compositions, and diffraction peaks were determined using scanning electron microscopy(SEM), electron probe microanalysis(EPMA) and X-ray Diffraction(XRD). According to the experimental results and the boundaries of binary system phase diagrams determine ternary system phase diagrams.
For Bi-Sb-Se liquidus projection, Bi-Sb system is isomorphous system without binary compound at the boundary. There is a line compound Sb2Se3 at the boundary of Sb-Se binary system. For Bi-Se binary system, there are a Bi2Se3 binary compound and a series of complicated binary compounds grouped as (Bi2)m(Bi2Se3)n. No ternary compound is found. There are four primary solidification phase regions, Bi2Se3, Sb2Se3 and, (Bi2)m(Bi2Se3)n and (Bi,Sb).
Experimental results show that the 400℃ isothermal section of Bi-Sb-Se ternary system exists a ternary compound and 6 tie-triangles. The ternary compound is Bi35Sb40Se25 and the 6 tie-triangles are Liquid+(Bi,Sb)+ Bi35Sb40Se25, Bi35Sb40Se25+Liquid+(Bi2)m(Bi2Se3)n, Bi35Sb40Se25+(Bi2)m(Bi2Se3)n +Sb2Se3, Bi2Se3+Sb2Se3+(Bi2)m(Bi2Se3)n, Sb2Se3+(Bi,Sb)+ Bi35Sb40Se25 and Bi2Se3+Sb2Se3+Liquid.
In the Bi-Sb-Te 400℃ isothermal section, no ternary compound is found. The phase diagram shows that there are 4 tie-triangles which are Liquid+(Bi,Sb)+ δ-(Sb2Te) 、Liquid+δ-(Sb2Te)+ (Bi2)m(Bi2Te3)n、δ-(Sb2Te)+ γ-(SbTe)+ (Bi2)m(Bi2Te3)n and (Bi2)m(Bi2Te3)n+ γ-(SbTe)+(Bi,Sb)2Te3
There is no ternary compound in the Bi-Se-Te ternary system at 400℃. The complicated binary phases in the Bi-Se and Bi-Te binary systems are grouped as Bi2Se3, (Bi2)m(Bi2Se3)n and Bi2Te3, (Bi2)m(Bi2Te3)n. The Bi2Se3 and Bi2Te3 form a solid solution Bi2(Se,Te)3 at 400℃. The (Bi2)m(Bi2Se3)n and (Bi2)m(Bi2Te3)n form a continuous solid solution (Bi2)m(Bi2(Se,Te)3)n. There is one tie-triangles which is Bi2(Se,Te)3+Liquid+(Se,Te).
Experimental measurements are carried to determine the 250℃ isothermal section of Sb-Se-Te ternary system. No ternary compound is found. There are five tie-triangles, which are Sb2Se3+δ-Sb2Te+Sb, Sb2Te3+Sb2Se3+(Se,Te), Sb2Se3+ δ-(Sb2Te)+ γ-(SbTe), Sb2Se3+Sb2Te3+ γ-(SbTe), Sb2Se3+Liquid+(Se,Te) and Sb2Se3+ δ-(Sb2Te)+Sb, Sb_2 Te_3+Sb_2 Se_3 + (Se,Te) .
For 40%Bi-Sb-Se-Te 400℃ isoplethal section, the(Bi2)m(Bi2(Se,Te)3)n single phase region and (Bi2)m(Bi2(Se,Te)3)n+Bi2(Se,Te)3 have been determined.
[1] L. L. N. Laboratory, “Estimated U.S. energy consumption in 2018”, (2018)
[2] J. T. Jarman, E. E. Khalil and E. Khalaf, "Energy Analyses of Thermoelectric materials", International Materials Reviews, Vol. 48, pp. 45-
[3] 朱旭山,工業材料雜誌220期,pp. 93-103,(2005)
[4] www..thermoelectrics.matsci.northwestern.edu/thermoelectrics/index.html
[5] E. A. Skrabek and J. W. McGrew, "Pioneer 10 and 11 RTG Performance Update", Space Nuclear Power Systems, pp.201-204, (1987).
[6] P. Li, L. Cai, P. Zhai, X. Tang, Q. Zhang and M. Niino, "Design of Concentration Solar Thermoelectric Generator", Journal of Electronic Materials, Vol. 39, pp. 1522-1530, (2010).
[7] A. Zhou, T. Zhu, X. Zhao, S. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf and E. Mueller, "Improved thermoelectric performance of higher manganese silicides with Ge additions", Journal of electronic materials, Vol. 39, pp. 2002-2007, (2010)
[8] C. Chubilleau, B. Lenoir, P. Masschelein, A. Dauscher, C. Candolfi, E. Guilmeau and C. Godart, "High temperature thermoelectric properties of CoSb3 skutterudites with PbTe inclusions", Journal of Materials Science, Vol. 48, pp. 2761-2766, (2013).
[9] Zhiting Tian, Sangyeop Lee, Gang Chen, "Heat Transfer in Thermoelectric Materials and Devices", Journal of Heat Transfer, Vol. 135, pp.1-13,(2013).
[10] A. Bulusu, and D. G. Walker, "Review of electronic transport models for thermoelectric materials", Superlattices and Microstructures, Vol. 44, pp. 1-36, (2008).
[11] H. Okamoto, Binary Alloy Phase Diagram, 2nd edition, Vol. 1, ASM International, Material Parks, OH, pp.787-789,(1990).
[12] Y. Cui, S. Ishihara, X .Liu, I. Ohnuma, R. Kainuma, H. Ohtani and K. Ishida “Thermodynamic Calculation of Phase Diagram in the Bi–In–Sb Ternary System”, Materials Transactions, Vol. 43, No. 8,pp. 1879-1886, (2002).
[13] N. K. Abrikosov, V. F. Bankina, K. F. Kharitonovich, “Issledovanie diagrammy sostoyaniya sistemy Bi-Se”. Russian Journal of Inorganic Chemistry, Vol. 5(9), (1960)
[14] A. A. Sher, I. P. Odin and A. V. Novoselova, Russian Journal of Inorganic Chemistry; Vol. 31, pp. 434-437, (1986).
[15] H. Okamoto,“The Bi-Se (bismuth-selenium) system”. Journal of phase equilibria, Vol.15(2), pp.194-201, (1994).
[16] H. Lind, S. Lidin, and U. Haussermann, "Structure and bonding properties of (Bi2)m(Bi2Se3)n stacks by first-principles density functional theory", Physical Review B, Vol. 72(18), pp. 572-576, (2005)..
[17] F. Körber and U. Haschimoto, "Zeitschrift für anorganische und allgemeine" Chemie, Vol.188, pp.114-126, (1930).
[18] N. K. Abrikosov, V. F. Bankina, Journal of Inorganic Chemistry, Vol.(3), pp.152-165, (1958).
[19] R. F. Bribreck“Characterization of phase in the 50-60 at.%Te region of the Bi-Te system by X-ray powder diffraction patterns”. Journal of Applied Crystallography, Vol(4), pp.241-246, (1968)
[20] K. Yamaha, K. Kihra and T. Matsumoto, “Bismuth tellurides : BiTe and 〖Bi〗_4 〖Te〗_3.”Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 35(1), pp.147-149, (1979)
[21] H. Okamoto, "Bi-Te (Bismuth-Tellurium)", Binary Alloy Phase Diagrams, Vol.1, pp. 800-801, (1990)
[22] R. J. Cava, H. W. Zandbergen, M. H. Lee, P. Ong and J. W. G. Bos, "Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n", Physical Review B, Vol.75, pp. 195203-1-195203-9, (2007)
[23] S. W. Chen, .S. T. Liu, J. S. Chang, “Bi-In-Te phase diagram”, Journal of Alloys and Compounds,Vol.722, pp.499-508, (2017).
[24] M. Wobst, Scr. Metall., Vol.5, pp583, (1971).
[25] Jui-shen Chang, Se-Se-Pb-Sn熱電材料與Sn-Ag-In-Zn軟焊合金之相平衡與相變化。國立清華大學化工所博士論文,新竹市,(2017)。
[26] G. Ghosh, “The Sb-Te(Antimony-Tellurium) System”, Journal of Phase Equilibria, Vol. 15(3), pp. 349-360, (1994)
[27] Y. Tsushiva“Structural phase transitions in the liquid state and melting enthalpy of the Se-Te system”. Journal of phase equilibria, Vol.15(2) pp 213-224, (1994)
[28] G. Ghosh, R. C. Sharma, D. T. Li. And Y. A. Chang “The Se-Te (selenium-Tellurium) system”. Journal of phase equilibria, Vol. 15(2), pp.213-224, (1994).
[29] G. Ghosh, H.L. Jukas and L. Delaey, “A thermodynamic assessment of the Se-Te system”. Calphad, Vol. 12(3), pp.294-299,(1988).
[30] N. Kh. Abrikosov and L. V. Poretskaya, “Study of the ternary system Sb-Bi-Te”, Inorganic Materials, Vol. 1(4), pp. 462-469, (1965).
[31] S. Wang, Y. Sun, J. Yang, B. Duan, L. Wu, W. Zhang*, and J. Yang*, “High thermoelectric performance in Te-free (Bi,Sb)2Se3 via structural transition induced band convergence and chemical bond softening”, : Energy Environ. Sci.,Vol(9), pp.3436-3447, (2016).
[32] T. Caillat, M. Carle, D. Perrin, H. Scherrer, and S. Scherrer, “Study of the Bi-Sb-Te ternary phase diagram”, Journal of Physics and Chemistry of Solids, Vol. 53(2), pp. 227-232, (1992).
[33] V. Tomashik and P. Perrrot, “Non-Ferrous Metal Systems Part 1:Selected Semiconductor Systems”. by G. Effenberg and S. Ilyenko, Springer Berlin Heidelberg (2006)
[34] C.H. Liu, H.J. Wu, and S.W. Chen “Liquidus Projection of the Ternary Bi-Sb-Te Thermoelectric Material System”, The Minerals, Metals & Materials Society and ASM International, Vol.44(A), pp,5424-5433,(2013)
[35] S. Nakajima “The crystal structure of Bi2Te3-xSex.” Journal of Physics and Chemistry Solids, Vol.24, pp.479-485, (1962).
[36] S. J. Hong, B. S. Chun “Microstructure and thermoelectric properties of extruded n-type 95%Bi2Te3–5%Bi2Se3 alloy along bar length”. Materials Science and Engineering: A, Vol.356(1), pp.345-351, (2003).
[37] H. G. Bouanani, D. Eddlike, B. Liautard, G. Brun, “Solid State Demixing in Bi2Se3-Bi2Te3 and Bi2Se3-In2Se3 phase diagram, Vol.(31), No.2, pp.177-187, (1996).
[38] S. W. Chen. “Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems”, metallurgical and materials transactions , Vol.3(E), pp.281-290, (2016)
[39] V. I. Ivlieva and N.K. Abrikosov, “Phase equilibriums in systems formed by antimony chalcogenides”, Doklady Akademii Nauk SSSR, Vol.159, pp.1326-1329, (1964).
[40] S.W. Chen, J.S. Chang, L.C. Chang, “Liquidus projection and isothermal section of Sb-Se-Te ternary system, Vol.201, pp.391-398, (2017).
[41] T. L. Anderson, and H. B. Krause, “Refinement of the Sb2Te3 and Sb2TeSe2 Structures and Their Relationship to Nonstoiehiometric Sb2Te3-ySey Compounds”, Acta Crys, B30, pp.1307-1310,(1974).