簡易檢索 / 詳目顯示

研究生: 曾柏瑜
Po-Yu Tseng
論文名稱: 應用於無線通訊之可離線調整頻寬轉導電容濾波器
A Gm-C Filter with Offline Frequency Tuning for Wireless Communication Applications
指導教授: 柏振球
Jenn-Chyou Bor
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 100
中文關鍵詞: 低通濾波器轉導電容離線調整頻寬多重輸入
外文關鍵詞: low-pass filter, Gm-C, offline frequency tuning, multi-input
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  在本篇論文中,我們利用兩種不同的架構設計並且實作了一個應用於無線通訊,且具有低功率以及高線性度特性的四階巴特渥斯轉導電容低通濾波器,第一種較為常見的架構使用無損耗式積分器作為濾波器的建構方塊,而第二種架構中我們提出了利用損耗式積分器來設計濾波器的作法。為了提升濾波器的線性度,本篇論文介紹了一個具有高線性度之轉導放大器,另外,利用多重輸入的轉導放大器設計,可以大幅減少整個濾波器所需要的功率消耗以及晶片面積。最後,由於轉導電容濾波器的頻寬可以藉由調整轉導放大器的轉導值來作調整,本設計中亦加上了一個離線式頻寬調整系統來克服由於晶片製程變異所產生的頻寬不準確性。
      為了驗證所提出的濾波器設計,採用了TSMC 0.18_μm CMOS製程製作了兩個實驗晶片,所需的電源供應為1.8伏特。量測的結果指出,使用無損耗式積分器作為建構方塊之濾波器其頻寬由原先設計的10 MHz下降至8.8 MHz,直流增益則為 -0.74 dB,當輸入訊號頻率是1 MHz且大小為1.5 Vppd時,其總諧波失真小於 -40 dBc。另外,濾波器的功率消耗大約是5.5 mW。
      根據模擬結果,使用損耗式積分器建構之濾波器其線性度表現較使用無損耗式積分器為佳,當輸入訊號頻率是1 MHz且大小為1.9 Vppd時,其總諧波失真小於 -40 dBc。同時,使用損耗式積分器之濾波器其功率消耗只有大約4 mW。除此之外,當啟用離線式頻寬調整系統時,其頻寬調整的誤差小於5%。


    In this thesis, a 4th-order Butterworth Gm-C filter with low power consumption and high linearity performance for wireless communication applications is designed and implemented in two different structures: common lossless-integrator-based structure and novel lossy-integrator-based one. To increase the linearity of the filter, an operational transconductance amplifier (OTA) with high linearity is introduced. Furthermore, the multi-input OTA structure is employed to reduce the power consumption and the active area. Due to the adjustability of the OTA transconductance, an offline frequency tuning system is also added to overcome the bandwidth inaccuracy which is caused by the process variation.
    In order to evaluate the performances of the designed filters, two test chips are fabricated with TSMC 0.18_μm CMOS process and the supply voltage is 1.8 V. The measurement results of the lossless-integrator-based 4th-order filter show that the filter bandwidth is varied from 10 MHz to 8.8 MHz and the DC gain is about -0.74 dB. The total harmonic distortion (THD) is smaller than -40 dBc when the input signal frequency is 1 MHz and the amplitude is less than 1.5 Vppd. Besides, the power consumption of the filter is about 5.5 mW.
    According to simulation results, the lossy-integrator-based 4th-order filter has better linearity performance than the lossless-integrator-based one. Its THD is smaller than -40 dBc when the input signal frequency is 1 MHz and the amplitude is less than 1.9 Vppd. Moreover, the power consumption of the lossy-integrator-based 4th-order filter is only 4 mW. By enabling the offline tuning loop, the frequency tuning error is less than 5%.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Thesis Organization 3 Chapter 2 Design of Operational Transconductance Amplifier (OTA) 5 2.1 Introduction 5 2.2 OTA Structure 6 2.2.1 General Fully Differential OTA 7 2.2.2 Multi-Input OTA 10 2.3 Common-Mode Feedback Circuit 11 2.4 Simulation Results 13 2.4.1 General Fully Differential OTA 13 2.4.2 Multi-Input OTA 17 2.4.3 CMFB Circuit 23 2.5 Summary 26 Chapter 3 Design of 4th-Order Butterworth Lowpass Gm-C Filter 27 3.1 Introduction 27 3.2 Lossless-Integrator-Based Architecture 28 3.2.1 Lowpass Biquad Topology 28 3.2.2 Filter Integration 30 3.3 Lossy-Integrator-Based Architecture 32 3.3.1 Lowpass Biquad Topology 32 3.3.2 Filter Integration 36 3.4 Output Buffer and Bias Circuit 38 3.5 Simulation Results 40 3.5.1 Lossless-Integrator-Based Filter 40 3.5.2 Lossy-Integrator-Based Filter 45 3.5.3 Output Buffer and Bias Circuit 49 3.6 Summary 52 Chapter 4 Design of Offline Frequency Tuning System 53 4.1 Introduction 53 4.2 Frequency Tuning System Architecture 55 4.3 Building Blocks of Frequency Tuning System 59 4.3.1 Comparator 59 4.3.2 Digital Phase Comparator 60 4.3.3 Successive Approximation Register 62 4.3.4 Digital-to-Analog Converter 64 4.4 Mixed-Mode Simulation Results 66 4.5 Summary 77 Chapter 5 Filter Implementation and Measurement Results 78 5.1 Lossless-Integrator-Based Filter 78 5.1.1 Measurement Setup 78 5.1.2 Measurement Results 80 5.1.3 Measurement Discussion 87 5.2 Lossy-Integrator-Based Filter with Offline Frequency Tuning 91 5.2.1 Integration Considerations 91 5.2.2 Measurement Setup 93 5.3 Summary 94 Chapter 6 Conclusion and Future Work 97 6.1 Conclusion 97 6.2 Future Work 98 Bibliography 99

    [1] Brent J. Maundy, Ivars G. Finvers, and Peter Aronhime, “Cross Coupled Transcondcutance Cell with Improved Linearity Range,” ISCAS 2000-IEEE, vol. 5, pp.157-160, May 2000.
    [2] Mingdeng Chen, Jose Silva-Martinez, Shahriar Rokhsaz, and Moises Robinson, “A 2-Vpp 80-200-MHz Fourth-Order Continuous-Time Linear Phase Filter with Automatic Frequency Tuning,” IEEE J. Solid-State Circuits, vol. 38, pp. 1745-1749, Oct. 2003.
    [3] L. Luh, John Choma, Jr., and J. Draper, “A Continuous-Time Common-Mode Feedback Circuit (CMFB) for High-Impedance Current-Mode Applications,” IEEE Trans. Circuits Syst. II, vol.47, no.4, pp. 363-369, Apr. 2000.
    [4] S.-H. Yang, K.-H Kim, Y.-H. Kim, Y. You, and K.-R. Cho, “A Novel CMOS Operational Transconductance Amplifier Based on a Mobility Compensation Technique,” IEEE Trans.Circuits Syst. II, Analog Dig. Signal Process., vol. 52, no. 1, pp. 37-42, Jan. 2005.
    [5] E.Sanchez-Sinencio and J.Silva-Martinez, “CMOS Transconductance Amplifiers, Architectures and Active Filters: A Tutorial,” IEE proc.-Circuits Devices System, vol. 147, pp. 3-12, Feb. 2000.
    [6] A. Wyszynski and R. Schaumann, “Avoiding Common-Mode Feedback in Continuous-time gm-C Filters by Use of Lossy Integrators,” ISCAS 1994-IEEE, vol. 5, pp. 281-284, June. 1994.

    [7] Bo Shi, Weiyun Shan, “A Gm-C Basedband Filter with Automatic Frequency Tuning for a Direct Conversion IEEE8011.A Wireless LAN Receiver,” in Proc. ESSCIRC, pp. 103-106, sep. 2004.
    [8] V. Saari, J. Ryynanen, J. Mustola, K. Halonen, and J. Jussila, J “A 10-MHz Channel-Select Filter for a Multicarrier WCDMA Base-Station,”, ISCAS 2006-IEEE, pp. 21-24, May 2006
    [9] Jinke Yao, Baoyong Chi, and Zhihua Wang, J “A 4MHz Gm-C Filter with On-Chip Frequency Automatic Tuning,”, ISCAS 2006-IEEE, pp. 3814-3817, May 2006
    [10] T.H Teo, E.S Khoo, and D. Uday “Fifth order low-pass transitional Gm-C filter with relaxation oscillator frequency tuning circuit,”, EDSSC 2003-IEEE, pp. 229-232, Dec 2003
    [11] Rolf Schaumann, Mac E. Van Valkenburg, Design of Analog Filters. New York: Oxford, 2001.
    [12] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston: McGraw-Hill, 2001

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE