研究生: |
王千慧 Chien-Hui Wang |
---|---|
論文名稱: |
改良的共軛有機半導體單載子傳輸之電流密度與電壓關係式 An Improved Closed-form Current Density-Voltage Equation for Single Carrier Transport in Conjugated Polymers |
指導教授: |
洪勝富
Sheng-Fu Horng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 共軛有機高分子 、空間電荷限制電流 |
外文關鍵詞: | Conjugated Polymers, SCLC, Mott - Gurney equation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前有機半導體的電壓、電流關係通常以Mott-Gurney式來作分析。Mott-Gurney式的推導主要是假設載子遷移率為常數,單一載子及無缺陷限制傳輸等。由此推導可得電流與電壓的平方成正比。但是許多的研究數據發現當外加高正偏壓,有機半導體的電流與電壓的2∼5次方成正比,而非單單二次方。實驗與理論的差異一般歸於載子遷移率會隨著電場增加而變大。典型分析數據的方式是直接將載子遷移率與電場的關係式,如Poole-Frenkel關係,代入Mott-Gurney式。然而,這與先前載子遷移率為常數的假設存在邏輯上的矛盾。雖然空間電荷限制電流模型已有更廣的發展,但是一個簡化、合於邏輯的近似解析解更有用於分析載子遷移率。
在本篇論文中,我們把電場對載子遷移率的影響放入假設,成功地推導出closed-form電流密度與電壓關係式(J-V equation);我們發現整體而言電流密度與電壓存在近似指數次方關係,但細部來說,指數值會隨著電流密度增加而些微上升。在這個數學架構下,實驗數據中次方關係異於2的狀況是合理的。我們也產生一系列考慮高場效應的理論數據來檢驗傳統的參數粹取方法,發現 的誤差在25%~40%,而 在三次以下仍有不錯的準確度。我們進一步提出新的參數粹取方式,就理論數據而言,準確度高達99.999%,也顯現新的J—V關係式和實驗數據有較好的相符度。
若比較數組J—V數據,發現當J—V的指數次方高且J—V表現較佳者(同樣電壓下,電流密度較高), 會是影響電流的主要因素,若J—V指數次方低但J—V表現仍較佳者, 會是影響電流的主要因素。我們並以新的粹取方法來分析濃度、溶劑、時間對 及 的影響。
The current-voltage (I-V) relationship in semi-conductive conjugated polymer is usually analyzed by the Mott-Gurney equation. In the derivation of the Mott-Gurney equation, constant carrier mobility, and single-carrier as well as trap–free space charge limited transport are assumed. While the Mott-Gurney equation predicts quadratic I-V relationship, power law with exponent larger than three is often observed in experimental data. The deviation between experiments and theory is usually attributed to the dependence of mobility on electric field. A typical way to analyze the data is to substitute the field-dependent mobility into the square law equation directly. However, this is inconsistent with the constant mobility assumption in the derivation of Mott-Gurney equation. Although extensive numerical modeling of charge transport in conjugated polymers is available, a simplified yet logically-consistent closed-form solution is useful to analyze field-dependent of carrier mobility.
In this thesis, we take field-dependent mobility into account and successfully derive a closed-form current density-voltage equation (J-V equation). Based on this new theoretical model, the current density is found to be globally proportional to Vm, where m actually increases slightly as the current density increases. In that case, power law with exponent different from two in experimental data is explained. A series of theoretical J-V data with consideration to high field effect is generated to test conventional parameter extraction method. The parameter is observed to have an error of 25%~40%. The other parameter is quite accurate while the exponent is lower than 3. Furthermore, a new parameter extraction method based on our new model is proposed, and the accuracy of extracted parameters from theoretical data can reach 99.99%. Compared with conventional model, our new model has a better agreement between theory and experiment.
By comparing J-V data from different experiments, is found to have dominate effect for J-V with larger exponent at high current density region. On the other hand, for J-V with larger exponent at high current density region, is found to have dominate effect. By the new parameter extraction method, the effects of dissolvent, concentration and time on and were analyzed.
[1-1.1] “Temperature-dependent single carrier device model for polymeric light
emitting diodes” J M Lupton and I D W Samuel J. Phys. D: Appl. Phys. 32 (1999) 2973–2984.
[1-1.2] “Electric-field and temperature dependence of the hole mobility in poly.p-phenylene vinylene.” P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster Phys. Rev. B, 55 R656 (1997)
[1-1.3] “Consistent time-of-flight mobility measurements and polymer
light-emitting diode current–voltage characteristics” I. H. Campbell and D. L. Smith C. J. Neef and J. P. Ferraris Appl. Phys. Lett. 74 2809 (1999)
[2-3.1] “Regional approximation approach to space charge limited tunneling injection in polymer devices” M.Koehier and I.A.Hummelgen J.App.Phys. 87 3074 (2000)
[2-3-1.1] “Carrier Injection into Semiconducting Polymers:Fowler-Nordheim Field-Emission Tunnelilng” A.J.Heeger,I.D.Parker,and Y.Yang Synth.Met. 67,23(1994)
[2-3-1.2] “Physics of Semiconductor Devices” S.M.Sze
[2-3-1.3] R.H.Fowler and L.Nordheim,Proc.R.Soc.London Ser. AA, 119, 173 (1928)
[2-3-2.1] “Space-Charge-Limited Currents in Single Crystals of Cadmium Sulfide” R.W.Smith and A.Rose Phys. Rev 97,1531 (1955)
[2-1.1][2-3-2.2] “Electrical Transport in Solids” Kwan C. Kao
[2-5-1.1] “Electric-field dependence of mobility in conjugated polymer films” S. V. Rakhmanova and E. M. Conwell Appl. Phys. Lett. 76 3822 (2000)
[ 2-5-1.2] “High-field hopping mobility in molecular systems which spatially correlated energetic disorder” Yu. N. Gartstein and E.M. Conwell Chemical Physics Letter 245 (1995) 351-358
[ 2-5-2.1] http://researchweb.watson.ibm.com/journal/rd/451/dimitrakopoulos.html
Organic thin-film transistors: A review of recent advances by C. D. Dimitrakopoulos and D. J. Mascaro