研究生: |
李人郁 Li, Jen Yu |
---|---|
論文名稱: |
剪切式表面聲波生物感測器應用於生長因子偵測 Detection of Epidermal Growth Factor using a Shear Horizontal Mode Surface Acoustic Wave Biosensor |
指導教授: |
饒達仁
Yao, Da Jeng |
口試委員: |
王玉麟
Wang, Yu Lin 盧彥文 Lu, Yen Wen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 剪切式表面聲波 、生長因子 |
外文關鍵詞: | Shear Horizontal Mode Surface Acoustic Wave, Epidermal Growth Factor |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用剪切式表面聲波原理發展出高靈敏度的生物感測系統,利用36°YX-LiTaO3當作壓電材料進行黃光微影製程技術完成感測晶片,當偵測到生物分子造成質量變化導致表面聲波傳遞速度改變,藉此觀察後端頻率變化量判別生物分子接合量。
此研究是用連續式陣列化電路進行訊號量測,可以同時感測兩個表面聲波感測器,一組為實驗組及一組為對照組,對照組是為了去除環境對於晶片感測之影響。本實驗以偵測生物分子為目標,其中包含非特異性之牛血清蛋白及特異性之人體生長因子兩種,而檢測特異性蛋白需要先在感測區域沉積二氧化矽薄膜,接著用3-氨基丙基三乙氧基矽烷或戊二醛兩種高分子進行修飾表面,這些高分子薄膜對於偵測抗體分子是具有生物活性。目前可以量測到低濃度牛血清蛋白(1% BSA)及生長因子之抗原(0.1ng/ml)生物分子對於頻率響應之影響,而不同濃度的生物分子對於頻率變化作圖,可以得到明顯趨勢變化。
In this study, the goal is to use biosensor as detection for biomolecule binding. The experiment set up includes a circuit board for signaling together with the biosensors. The biosensor is based on a theory of “Shear Horizontal Mode Surface Acoustic Wave” or in short “SH-SAW”. SH-SAW is a high sensitivity biosensor having 36°YX-LiTaO3 as a piezoelectric material fabricated using lithography process. The biosensor can detect the signal by using the frequency shift of surface acoustic wave and result as the amount of biomolecule bindings in graphs. Two biosensors are used at the same time (one is for testing and another as reference) to eliminate the noise that might occur in the environment. There are 2 types of biomolecules used in this study: Bovine serum albumin (BSA) and Epidermal growth factor (EGF). BSA is considered as a non-specific molecule binding so this biomolecule will be used as the double check for the biosensor while EGF is a specific molecule binding will be used as the target. Also, the biosensors are deposited with a thin layer of silicon dioxide (SiO2) and then coated with (3-Aminopropyl) triethoxysilane (APTES) or glutaraldehyde to capture the specific antibody in EGF. Currently, the biosensors can detect a low concentration of 1% BSA solution and 0.1ng/ml of EGF from the frequency respond since it is related to the different concentration of samples.
L. Du, C. Wu, Q. Liu, L. Huang, and P. Wang, "Recent Advances in Olfactory Receptor-Based Biosensors," Biosensors and Bioelectronics, vol. 42, pp.570-580, 2013.
[2] J. Wang, "Electrochemical Glucose Biosensors," American Chemical Society, pp. 814-825, 2008.
[3] M.-I. Rocha-Gaso, C. March-Iborra, Á. Montoya-Baides, and A. Arnau-Vives, "Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review," Sensors, vol. 9, p. 5740, 2009.
[4] D. Soulieres, N. N. Senzer, E. E. Vokes, M. Hidalgo, S. S. Agarwala, and L. L. Siu, "Multicenter Phase II Study of Erlotinib, an Oral Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor, in Patients with Recurrent or Metastatic Squamous Cell Cancer of the Head and Neck," Journal of Clinical Oncology, vol. 22, pp. 77-85, 2004.
[5] D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, "Electrochemical Biosensors Sensor Principles and Architectures," Sensors, vol. 8, pp. 1400-1458, 2008.
[6] M. Cooper, "Label-Free Screening of Bio-Molecular Interactions," Analytical and Bioanalytical Chemistry, vol. 377, pp. 834-842, 2003.
[7] M. Nirschl, F. Reuter, and J. Vörös, "Review of Transducer Principles for Label-Free Biomolecular Interaction Analysis," Biosensors, vol. 1, p. 70, 2011.
[8] S. Sang and H. Witte, "A Novel PDMS Micro Membrane Biosensor Based on the Analysis of Surface Stress," Biosensors and Bioelectronics, vol. 25, pp. 2420-2424, 2010.
[9] L. C. Clark and C. Lyons, "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery," Annals of the New York Academy of Sciences, vol. 102, pp. 29-45, 1962.
[10] D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, "Electrochemical Biosensors Sensor Principles and Architectures," Sensors (Basel, Switzerland), vol. 8, pp. 1400-1458, 2008.
[11] A. Kueng, C. Kranz, and B. Mizaikoff, "Amperometric ATP Biosensor Based on Polymer Entrapped Enzymes," Biosensors and Bioelectronics, vol. 19, pp. 1301-1307, 2004.
[12] T. Matsuo and K. D. Wise, "An Integrated Field-Effect Electrode for Biopotential Recording," Biomedical Engineering, IEEE Transactions on, vol. BME-21, pp. 485-487, 1974.
[13] P. Bergveld and N. F. de Rooij, "From Conventional Membrane Electrodes to Ion-Sensitive Field-Effect Transistors," Medical and Biological Engineering and Computing, vol. 17, pp. 647-654, 1979.
[14] C.-S. Lee, S. Kim, and M. Kim, "Ion-Sensitive Field-Effect Transistor for Biological Sensing," Sensors, vol. 9, pp. 7111-7131, 2009.
[15] L. Qu, S. Xia, C. Bian, J. Sun, and J. Han, "A Micro-Potentiometric Hemoglobin Immunosensor Based on Electropolymerized Polypyrrole–Gold Nanoparticles Composite," Biosensors and Bioelectronics, vol. 24, pp. 3419-3424, 2009.
[16] A. J. Haes and R. P. Van Duyne, "A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles," Journal of the American Chemical Society, vol. 124, pp. 10596-10604, 2002.
[17] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive Optical Biosensors for Unlabeled Targets: A review," Analytica Chimica Acta, vol. 620, pp. 8-26, 2008.
[18] M. A. Cooper, "Optical Biosensors in Drug Discovery," Nat Rev Drug Discov, vol. 1, pp. 515-528, 2002.
[19] Y.-H. Zheng, T.-C. Hua, D.-W. Sun, J.-J. Xiao, F. Xu, and F.-F. Wang, "Detection of Dichlorvos Residue by Flow Injection Calorimetric Biosensor Based on Immobilized Chicken Liver Esterase," Journal of Food Engineering, vol. 74, pp. 24-29, 2006.
[20] H. G. Hundeck, M. Weiß, T. Scheper, and F. Schubert, "Calorimetric Biosensor for The Detection and Determination of Enantiomeric Excesses in Aqueous and Organic Phases," Biosensors and Bioelectronics, vol. 8, pp. 205-208, 1993.
[21] M. Yakovleva, S. Bhand, and B. Danielsson, "The Enzyme Thermistor—A Realistic Biosensor Concept. A critical review," Analytica Chimica Acta, vol. 766, pp. 1-12, 2013.
[22] J. Rickert, A. Brecht, and W. Göpel, "Quartz Crystal Microbalances for Quantitative Biosensing and Characterizing Protein Multilayers," Biosensors and Bioelectronics, vol. 12, pp. 567-575, 1997.
[23] I. Mannelli, M. Minunni, S. Tombelli, and M. Mascini, "Quartz Crystal Microbalance (QCM) Affinity Biosensor for Genetically Modified Organisms (Gmos) Detection," Biosensors and Bioelectronics, vol. 18, pp. 129-140, 2003.
[24] 梁邦儀, "以石英晶體微量天秤分析溶膠-凝膠法所製備之分子拓印高分子," 2004.
[25] Z. Shen, M. Huang, C. Xiao, Y. Zhang, X. Zeng, and P. G. Wang, "Nonlabeled Quartz Crystal Microbalance Biosensor for Bacterial Detection Using Carbohydrate and Lectin Recognitions," Analytical Chemistry, vol. 79, pp. 2312-2319, 2007.
[26] E. Howe and G. Harding, "A Comparison of Protocols for the Optimisation of Detection of Bacteria using a Surface Acoustic Wave (SAW) Biosensor," Biosensors and Bioelectronics, vol. 15, pp. 641-649, 2000.
[27] E. Berkenpas, P. Millard, and M. Pereira da Cunha, "Detection of Escherichia coli O157:H7 with Langasite Pure Shear Horizontal Surface Acoustic Wave Sensors," Biosensors and Bioelectronics, vol. 21, pp. 2255-2262, 2006.
[28] Y. Hur, J. Han, J. Seon, Y. E. Pak, and Y. Roh, "Development of an SH-SAW Sensor for the Detection of DNA Hybridization," Sensors and Actuators A: Physical, vol. 120, pp. 462-467, 2005.
[29] X. Liu, J.-Y. Wang, X.-B. Mao, Y. Ning, and G.-J. Zhang, "Single-Shot Analytical Assay Based on Graphene-Oxide-Modified Surface Acoustic Wave Biosensor for Detection of Single-Nucleotide Polymorphisms," Analytical Chemistry, vol. 87, pp. 9352-9359, 2015.
[30] F. Di Pietrantonio, D. Cannatà, M. Benetti, E. Verona, A. Varriale, M. Staiano, et al., "Detection of odorant Molecules via Surface Acoustic Wave Biosensor Array Based on Odorant-Binding Proteins," Biosensors and Bioelectronics, vol. 41, pp. 328-334, 2013.
[31] K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, et al., "Label-Free and High-Sensitive Detection of Human Breast Cancer Cells by Aptamer-Based Leaky Surface Acoustic Wave Biosensor Array," Biosensors and Bioelectronics, vol. 60, pp. 318-324, 2014.
[32] N. Moll, E. Pascal, D. H. Dinh, J. L. Lachaud, L. Vellutini, J. P. Pillot, et al., "Multipurpose Love Acoustic Wave Immunosensor for Bacteria, Virus or Proteins Detection," IRBM, vol. 29, pp. 155-161, 2008.
[33] 施正雄, "化學感測器," 五南出版, 2015.
[34] G. N. Ferreira, A.-C. da-Silva, and B. Tomé, "Acoustic Wave Biosensors: Physical Models and Biological Applications of Quartz Crystal Microbalance," Trends in biotechnology, vol. 27, pp. 689-697, 2009.
[35] L. Rayleigh, "On Waves Propagated along the Plane Surface of an Elastic Solid," Proceedings of the London Mathematical Society, vol. s1-17, pp. 4-11, November 1, 1885 1885.
[36] R. M. White and F. W. Voltmer, "Direct Piezoelectric Coupling to Surface Elastic Waves," Applied Physics Letters, vol. 7, pp. 314-316, 1965.
[37] B. Drafts, "Acoustic Wave Technology Sensors," Microwave Theory and Techniques, IEEE Transactions on, vol. 49, pp. 795-802, 2001.
[38] 江明璋, "設計改良式表面聲波感測器應用於低濃度混合氣體量測," 清華大學,碩士論文, 2013.
[39] T. Alizadeh and S. Zeynali, "Electronic Nose Based on The Polymer Coated SAW Sensors Array for the Warfare Agent Simulants Classification," Sensors and Actuators B: Chemical, vol. 129, pp. 412-423, 2008.
[40] M. Rapp, J. Reibel, A. Voigt, M. Balzer, and O. Bülow, "New Miniaturized SAW-Sensor Array for Organic Gas Detection Driven by Multiplexed Oscillators," Sensors and Actuators B: Chemical, vol. 65, pp. 169-172, 2000.
[41] M. Puiu, A.-M. Gurban, L. Rotariu, S. Brajnicov, C. Viespe, and C. Bala, "Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats," Sensors, vol. 15, p. 10511, 2015.
[42] N. Bojorge Ramírez, A. Salgado, and B. Valdman, "The Evolution and Developments of Immunosensors for Health and Environmental Monitoring: Problems and Perspectives," Brazilian journal of chemical engineering, vol. 26, pp. 227-249, 2009.
[43] R. F. Steiner and H. Edelhoch, "Fluorescent Protein Conjugates," Chemical Reviews, vol. 62, pp. 457-483, 1962.
[44] D. M. Jameson and J. A. Ross, "Fluorescence Polarization/Anisotropy in Diagnostics and Imaging," Chemical reviews, vol. 110, pp. 2685-2708, 2010.
[45] F. Fournel, E. Baco, M. Mamani-Matsuda, M. Degueil, B. Bennetau, D. Moynet, et al., "Love Wave Biosensor for Real-Time Detection of Okadaic Acid as DSP Phycotoxin," Sensors and Actuators B: Chemical, vol. 170, pp. 122-128, 2012.
[46] X. Pei, B. Zhang, J. Tang, B. Liu, W. Lai, and D. Tang, "Sandwich-Type Immunosensors and Immunoassays Exploiting Nanostructure Labels: A Review," Analytica chimica acta, vol. 758, pp. 1-18, 2013.
[47] M. I. R. Gaso, Y. Jiménez, L. A. Francis, and A. Arnau, "Love Wave Biosensors: A Review," State of the art in biosensors—general aspects, InTech. doi, vol. 10, p. 53077, 2013.
[48] K. Länge, B. Rapp, and M. Rapp, "Surface Acoustic Wave Biosensors: A Review," Analytical and Bioanalytical Chemistry, vol. 391, pp. 1509-1519, 2008.
[49] S. U. Senveli, Z. Ao, S. Rawal, R. H. Datar, R. J. Cote, and O. Tigli, "A Surface Acoustic Wave Biosensor for Interrogation of Single Tumour Cells in Microcavities," Lab on a Chip, vol. 16, pp. 163-171, 2016.
[50] A. Tretjakov, V. Syritski, J. Reut, R. Boroznjak, and A. Öpik, "Molecularly Imprinted Polymer Film Interfaced with Surface Acoustic Wave Technology as a Sensing Platform for Label-Free Protein Detection," Analytica Chimica Acta, vol. 902, pp. 182-188, 2016.
[51] M. Saitakis, A. Dellaporta, and E. Gizeli, "Measurement of Two-Dimensional Binding Constants between Cell-Bound Major Histocompatibility Complex and Immobilized Antibodies with an Acoustic Biosensor," Biophysical Journal, vol. 95, pp. 4963-4971, 2008.
[52] J. Lee, Y. Lee, J.-Y. Park, H. Seo, T. Lee, W. Lee, et al., "Sensitive and Reproducible Detection of Cardiac Troponin I in Human Plasma using a Surface Acoustic Wave Immunosensor," Sensors and Actuators B: Chemical, vol. 178, pp. 19-25, 2013.
[53] V. J.W. Garder, "Microsensors MEMS and Smart Devices" vol. 319-334: Wiley-VCH, 2001.
[54] C. Campbell, "Surface Acoustic Wave Devices for Mobil and Wireless Communications: Academic Press" , Inc., 1998.
[55] 高國陞, "表面聲波元件之頻率及溫度特性之研究國立中山大學",博士論文, 2004.
[56] B. D. Stephen, "Acoustic Wave Sensors:Theory, Design, And Physico-Chemical Application,", 1996.
[57] 楊永瑞, "以表面聲波震盪電路為基礎之生化感測系統": 清華大學,碩士論文, 2005.
[58] G. Carpenter and S. Cohen, "Epidermal Growth Factor," Annual review of biochemistry, vol. 48, pp. 193-216, 1979.
[59] G. Carpenter and S. Cohen, "Epidermal growth factor," J Biol Chem, vol. 265, pp. 7709-7712, 1990.
[60] S. K. Lim, S. Perrier, and C. Neto, "Patterned Chemisorption Of Proteins by Thin Polymer Film Dewetting," Soft Matter, vol. 9, pp. 2598-2602, 2013.
[61] N. A. Hedley Glencross, Chris Smith, Qiuyu Wang, "Biomedical Science Practice: Experimental and Professional Skills," 2010.