研究生: |
高旻琮 Kao, Min-Tsung |
---|---|
論文名稱: |
利用計算流體力學分析與模擬超臨界水之熱傳劣化現象 Simulation of Forced Convective Heat Transfer of Super Critical Water Using the Technic of Computational Fluid Dynamics |
指導教授: |
李敏
Lee, Min |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 超臨界水 、熱傳劣化 |
外文關鍵詞: | heat transfer deterioration, CFD, super critical water |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超臨界水反應器為第四代核反應器中的一種。其以高熱效率(45%),以及簡化的系統著稱。然而,由於超臨界水的特殊熱力性質,超臨界水反應器的設計需掌握兩種知識:(a)超臨界水的熱傳現象 (b)超臨界水熱傳係數的預測。超臨界水反應器操作於極大壓力之下(25 MPa),做實驗相當昂貴,因此本論文以商業計算流體力學(Computational Fluid Dynamics, CFD) FLUENT軟體來探討超臨界水的熱傳現象。
強制對流的熱傳分析,當流動達到紊流時,一般使用最廣的經驗式為Dittus-Boelter關係式。當量測的熱傳遞係數比用Dittus-Boelter關係式所得的值還大時,稱為熱傳強化現象;反之,當量測而得的熱傳遞係數比用Dittus-Boelter關係式所得的值還小時,稱為熱傳劣化現象。根據模擬結果,熱傳強化現象已可利用RNG紊流模型準確模擬。最大的熱傳遞係數發生於壁溫稍低於準臨界溫度的地方是因為近壁區比流體中心區域更早達到比熱最大值。熱傳劣化的模擬,雖然可看到劣化現象,但與實驗數據仍有段差距。最後考慮了實驗的不準確度,探討各種不同進口溫度與操作壓力對壁溫分佈的影響,發現,操作壓力的增加與進口溫度的提升,都可有效的減緩熱傳劣化的發生。
最後,分別探討了浮力作用對於熱傳強化與惡化的影響。模擬結果顯示浮力作用在熱傳強化中幾乎可以忽略,但卻是造成熱傳劣化的主要原因。
Supercritical Water Reactor (SCWR) is one of the Gen IV systems. SCWR has the advantages of high thermal efficiency (45%) and highly simplified plant systems. Due to the large variations of thermal properties of supercritical water when the temperature is close to the critical temperature or pseudo critical temperature , there are two things of concern for the design of supercritical water reactor. These are the heat transfer phenomenon of supercritical water and the prediction of heat transfer coefficient. SCWR operate at very high pressure (25 MPa) , therefore ; it is very expensive to study heat transfer phenomenon of supercritical water experimentally. Commercial Computational Fluid Dynamics (CFD) software FLUENT is used to study the heat transfer of supercritical water.
Usually, Dittus-Boelter correlation is used to predict heat transfer coefficient of forced convection. If the heat transfer coefficient as predicted by the Dittus-Boelter correlation is higher than the experimental data, the situation is termed heat transfer deterioration. If the heat transfer coefficient as predicted by the Dittus-Boelter correlation is lower than the experimental data, the situation is termed heat transfer enhancement. The results of simulation demonstrated that heat transfer enhancement can be accurately predicted using the RNG turbulence model. Maximum heat transfer coefficient is occurred before the bulk temperature reaches the pseudo-critical temperature because the wall temperature reaches the pseudo-critical temperature earlier than the bulk coolant temperature does. The results of the analyses show that the phenomena of heat transfer deterioration can be simulated. Nevertheless, the locations of the heat transfer deterioration as predicted by the FLUENT code are deviated from the experimental data of Shitsman’s. It is also found that the phenomenon of heat transfer deterioration can be avoided by increasing the inlet temperature or operation pressure.
The results of simulation demonstrated that the buoyancy has no effect on heat transfer enhancement. Nevertheless, it is the main reason of the heat transfer deterioration.
[1] http://nuclear.inl.gov/gen4/scwr.shtml
[2] Cheng. X., Schulenberg, T.,“Heat Transfer at supercritical
pressuers –Literature Review and Application to a HPLWR,”
Scientific Report FZKA6609. Forschungszentrum Karlsruhe, 2001
[3] http://webbook.nist.gov/chemistry/fluid/
[4] Yamagata, K., Nishikawa, K., Hasegawa, S.,“Forced convection heat transfer to supercritical water flowing in Tubes,” Int. J. Heat Mass Transfer, 15,1972, 2575-2593.
[5] M. E. Shitsman,“Impairment of the heat transmission at supercritical pressures,” High Temperatures, vol. 1, no. 2, 1963, pp. 237-244.
[6] Jeremy Licht , Mark Anderson , Michael Corradini,“Heat transfer to water at supercritical pressures in a circular and square annular flow geometry,” Nuclear Engineering and Engineering Physics ,College of Engineering, University of Wisconsin , 2008
[7] Styrikovich M.A., Margulova T.K., Miropolskiy Z.L.,“Problem in the development of designs of supercritical boilers,”Teploenergetika,vol.32(6),1967 , p.p. 4-7
[8] J.D. Jackson, W.B. Hall,“Influence of Buoyancy on Heat Trasnfer to Fluids in Vertical Tubes under Turbulent Conditions,”In Turbulent Forced Convection in Channels and Bundles, vol.2, 1979,p.p. 613-640.
[9] H. Ogata, S. Sato,“Measurment of Forced Convection Heat Transfer to Supercritical Helium,”Proc. of the 4th . Int. Cryogenic Engineering Conference, Eindhoven, Netherlands, may 24-26,1972 , pp.291-294
[10] B.S. Petuhkov, V.A. Kurganov,“Heat Transfer and Flow Resistance un the Turbulent Pipe Flow of a Fluid with Near-Critical State Parameters,”Teplofizika Vysokikh Temperature , Vol. 21, No. 1, Jan.1983, pp.92-100
[11] Kim. S.H., Kim, Y.I., Bae, Y.Y. Cho, B.H.,“Numerical Simulation of the vertical upward flow of water in a heated tube at supercritical pressure,”Proceedings of ICAPP , 2004
[12] Meyder R.,“Turbulent Velocity and Temperature Distribution in the Central subchannel of Rod Bundels,”Nuclear Engineering and Design ,vol. 35 , 1975, pp.181-189
[13] F. Roelofs, “CFD Analyses of Heat Transfer to Supercritical Water Flowing Vertically Upward in a Tube,” Under the contract of the Netherlands Ministry of Economic Affairs, 2004
[14] X. Cheng∗, B. Kuang, Y.H. Yang, “Numerical analysis of heat transfer in
supercritical water cooled flow channels,”Nuclear Engineering and design ,2007
[15] S. KOSHIZUKA, N.TAKANO and Y.OKA,“Numerical analysis of deterioration phenomena in heat transfer to supercritical water,”Int. J. Heat Mass Transfer ,Vol.38,No.16, 1995,pp.3077-3084
[16] Jue Yanga,*, Yoshiaki Okaa, Yuki iIshiwataria, Jie Liub, Jaewoon Yooa,“Numerical investigation of heat transfer in upward flows of supercritical water in circular tubes and tight fuel rod bundles,”Nuclear Engineering and design , 2006
[17] A. P. Ornatskij, L. F. Glushchenko, and S. I. Kalachev,“Heat transfer with rising and falling flows of water in tubes of small diameter at supercritical pressures,” Thermal Engineering, vol. 18, no. 5, pp. 137-141, 1971