簡易檢索 / 詳目顯示

研究生: 陳乃慶
Chen, Nai-Ching
論文名稱: TE01模磁旋返波振盪於模式選擇線路之研究
TE01 Gyrotron Backward-Wave Oscillator with Mode Selective Circuit
指導教授: 張存續
Chang, Tsun-Hsu
朱國瑞
Chu, Kwo-Ray
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 68
中文關鍵詞: 磁旋管磁旋返波振盪器高次模TE01模式選擇線路Sector TransducerTansverse Slice
外文關鍵詞: Gyrotron, Gyro-BWO, High Order Mode, Mode Selective Circuit
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Gyrotron backward wave oscillator (gyro-BWO) is a frequency tunable high power source in millimeter and sub-millimeter region. The broadband tunability of gyro-BWO has been demonstrated in NTHU by operating the fundamental TE11 mode at Ka-band. To push forward the operating frequency up to sub-terahertz region, high order mode operation is more favorable due to the structure size limit. TE0n mode, features low dissipation on wall loss, has the advantage of continues-wave operation at small interacting structure. Thus a Ka-Band fundamental harmonic (s=1) gyro-BWO is one of the best candidates of preliminary study for high frequency microwave source. Owing to the high order mode operation, the stability and tunability of the gyro-BWO deteriorate severely by mode competition. A single mode, steady-state code is employed to analyze both the starting behavior of the spurious oscillations and interacting efficiency of the operating mode. The lower order transverse mode tends to constitute the competition at lower magnetic field of operating tuning range. As the magnetic field tuning up, the higher order transverse mode starts to resonate and travels with lower group velocity which turns into another detrimental. A reduced interaction structure might be a solution to suppress these unwanted oscillations. However, the performance of a gyro-BWO is greatly limited as well. This dissertation devotes to design the selective circuit for TE01 mode on the basis of field profile. The effects of transverse slice and sector waveguide on spurious modes are analyzed by HFSS software. The structure length and taper geometry are thus optimized without misgiving of mode competition. The experiment result reveals that a TE01 gyro-BWO with multiple transverse slice could provide an extremely broad stable tuning range from 31.4 GHz to 36.4 GHz. The peak interacting efficiency is 23.7 % which yields 100 kW at Ib=4.5 A and Vb=93.6 kV


    Contents Abstract 1. Introduction 1.1. Applications of Millimeter Wave and Sub-Millimeter Wave………………1 1.2. Review of the Gyrotron Devices…………………………2 1.3. Overview…………………………………………………………5 2. Theory and Numerical Method 2.1 Field Equations…………………………………………………7 2.2 Electron Dynamics………………………………………………10 2.3 Boundary Conditions……………………………………………11 3. Theoretical Study for a TE01 Fundamental Harmonic Gyrotron Backward -Wave Oscillator 3.1 Review of Gyro-BWO Experiment………………………………12 3.2 Transverse Mode Competition…………………………………13 3.3 Mode Selective Circuit………………………………………20 3.3.1 Sector Transducer …………………………………………22 3.3.2 Transverse Slice……………………………………………31 4. Experimental Design and Setup 4.1 Magnetron Injection Gun……………………………………42 4.2 TE01 Mode Converter…………………………………………47 4.3 Transverse Slice on Interaction Structure……………50 4.4 Integration of RF Structure………………………………51 4.5 Diagnostics Circuit…………………………………………52 5. Experiment Results and Discussion 5.1 Simulation Result……………………………………………53 5.2 Experiment Result……………………………………………57 6. Conclusion: Summary and Future Directions………………63 Reference………………………………………………………………65

    1. A.S. Gilmour Jr., “Microwave Tubes”, Artech House, Norwood, 1986.
    2. K. R. Chu, Rev. Mod. Phys. 76, 489 (2004).
    3. A. V. Gaponov-Grekhov and V.L. Granatstein, “Applications of High-Power Microwaves”, Artech House, Boston.London, 1994.
    4. J.W. Gewartowski and H.A. Watson, “Principles of Electron Tubes”, 1970.
    5. V. L. Granatstein, B. Levush, B. G. Danly, and R. K. Parker, IEEE Trans. Plasma Sci. 25, 1322 (1997).
    6. S.H. Gold and G. S. Nusinovich, Rev. Sci. Instrum. 68, 3945 (1997).
    7. P. Forman, Rev. Mod. Phys. 67, 397 (1995).
    8. G. S. Nusinovich, Introduction to the Physics of Gyrotrons (John Hopkins University Press, Maryland), 2004
    9. V.L. Granatstein, G. S. Nusinovich, M. Blank, K. Felch, R. M. Gilgenbach, H. Guo, H. Jory, N. C. Luhmann, D. B. McDermott, J. M. Rogers, and T. A. Spencer, “Gyrotron oscillators and amplifiers in High-Power Microwave Sources and Technologies”, edited by R. J. Barker and E. Schamiloglu, IEEE, New York, 156-198 (2001).
    10. A. W. Fliflet, Int. J. Electron. 61, 1049 (1986).
    11. T. W. Stix, Waves in Plasmas, AIP, New York (1992).
    12. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, Phys. Rev. Lett. 81, 4760 (1998).
    13. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang and Demostehenes J. Dialetis, IEEE Trans. Plasma Sci. 27 (1999).
    14. K. R. Chu and A.T. Lin, IEEE Trans. Plasma Sci. 16, 90 (1988).
    15. G. P. Timms and G. F. Brand, Appl. Phys. Lett. 68, 2899 (1996).
    16. T. Idehara, I, Ogawa, S. Mitsudo, M. Pereyaslavets, N. Nishida, and K. Yoshida, IEEE Trans. Plasma Sci. 27, 340 (1999).
    17. S. Y. Park, V. L. Granatstein, and R. K. Parker, Int. J. Electron. 57, 1109 (1984).
    18. C. S. Kou, Phys. Plasmas, 1, 3093 (1994).
    19. V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, M. I. Petelin, and P. S. Strelkov, Int. J. Electron. 51, 541 (1981).
    20. Ganguly, A. K., and S. Ahn, Int. J. Electron., 67, 261 (1989).
    21. C. S. Kou, C. H. Chen, and T. J. Wu, Phys. Rev. E, 57, 7162 (1998).
    22. S. H. Chen, K. R. Chu, and T. H. Chang, Phys. Rev. Lett. 85, 2633 (2000).
    23. G. S. Nusinovich, A. N. Vlasov, and T. M. Antonsen, Jr., Phys. Rev. Lett. 87, 218301 (2001).
    24. T. H. Chang, S. H. Chen, L. R. Barnett, and K. R. Chu, Phys. Rev. Lett., 87, 064802 (2001).
    25. S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan, and K. R. Chu, Phys. Rev. Lett., 89, 268303 (2002).
    26. K. F. Pao, T. H. Chang, S. H. Chen, C. F. Yu and K. R. Chu, Phys. Rev. Lett. 95, 185101 (2005)
    27. K. F. Pao, C. T. Fan, C. C. Chiu and K. R. Chu, Phys. Plasmas, 14, 093301 (2007).
    28. S. Y. Park, R. H. Kyser, C. M. Armstrong, R. K. Parker, and V. L. Granatstein, IEEE Trans. Plasma Sci., 18, 321 (1990).
    29. C. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen, and K. R. Chu, Phys. Rev. Lett., 70, 924 (1993).
    30. T. A. Spenser, C. E. Davis, K. L. Hendrics, F. J. Agee, and R. M. Gilgenbach, IEEE Trans. Plasma Sci., 24, 630 (1996).
    31. M. A. Basten, W. C. Guss, K. E. Kreischer, R. J. Temkin, and M. Caplan, Int. J. Infr. Millimeter Waves, 16, 889 (1995).
    32. K. Kamada, K. Nawashiro, F. Tamagawa, H. Igarashi, S. Kizu, C. Y. Lee, S. Kawasaki, R. Ando, and M. Masuzaki, Int. J. Infr. Millimeter Waves, 19, 1317 (1998).
    33. T. H. Chang, C. T. Fan, K. F. Pao, K. R. Chu, and S. H. Chen, Appl. Phys. Lett. 90, 191501 (2007).
    34. W. He, K. Ronald, A. R. Young, A. W. Cross, A. D. R. Phelps, C. G. Whyte, E. G. Rafferty, J. Thomson, C. W. Robertson, D. C. Speirs, S. V. Samsonov, V. L. Bratman, and G. G. Denisov, IEEE Trans. Electron Devices 52, 839 (2005)
    35. C. T. Fan, T. H. Chang, K. F. Pao and K. R. Chu, Phys. Plasmas, 14, 093102 (2007).
    36. K. R. Chu, Phys. Fluids, 21, 2354-2364 (1978).
    37. D. S. Furuno, D. B. McDermott, C. S. Kou, N. C. Luhmann and P. Vitello, Phys. Rev. Lett., 62, 1314 (1989).
    38. C. S. Kou, Q. S. Wang, D. B. McDermott, A. T. Lin, K. R. Chu, and N. C. Luhmann, Jr., IEEE Trans. Plasma Sci. 20, 155 (1992).
    39. A. K. Ganguly and J. L. Hirshfield, Phys. Rev. Lett., 70, 291 (1993).
    40. V. L. Bratman, A. E. Fedotov, Y. K. Kalynov, V. N. Manuilov, M. M. Ofitserov, S. V. Samsonov, and A. V. Savilov, IEEE Trans. Plasma Sci., 27, 456 (1999).
    41. Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., Phys. Rev. Lett. 75, 4322 (1995).
    42. G. G. Denisov, V. L. Bratman, A. W. Cross, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte, Phys. Rev. Lett. 81, 5680 (1998).
    43. W. He, A. W. Cross, A. D. R. Phelps, C. G. Whyte, S. V. Samsonov, V. L. Bratman, and G. G. Denisov, Appl. Phys. Lett. 89, 091504 (2006).
    44. Y. Y. Lau and L. R. Barnett, Int. J. Infr. Millimeter Waves, 3, 619 (1982).
    45. K. R. Chu and D. Dialetis, Int. J. Infr. Millimeter Waves, 13, 45 (1985).
    46. C. K. Chong, D. B. McDermott, A. J. Balkcum and N. C. Luhmann, IEEE Trans. Plasma Sci. 20, 176 (1992).
    47. C. K. Chong, D. B. McDermott, A. T. Lin, W. J. DeHope, Q. S. Wang and N. C. Luhmann, IEEE Trans. Plasma Sci. 24, 735 (1996).
    48. C. K. Chong, D. B. McDermott and N. C. Luhmann, IEEE Trans. Plasma Sci. 26, 500 (1998).
    49. N. C. Chen, C. F. Yu and T. H. Chang, Phys. Plasmas, 14, 123105, (2007).
    50. R. L. Schriever, C. C. Johnson, Proc. Of the IEEE, 1966.
    51. T. Idehara, I. Ogawa, La Agusu, T. Kanemaki, S. Mitsudo, T. Saito, T. Fujiwara and H. Takahashi, Int. J. Infr. Millimeter Waves, 28, 433 (2007).
    52. H. H. Song, D. B. Mcdermott, Y. Hirata, L. R. Barnett, C. W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu and N. C. Luhmann, Phys. Plasmas, 11, 2935 (2004).
    53. W. C. Tsai, T. H. Chang, N. C. Chen and K. R. Chu, Phys. Rev. E, 70, 056402, 2004.
    54. R. R. Collin, Foundations for Microwave Engineering, 2nd ed. (McGraw-Hill, New York 1992), p. 197.
    55. F. Sporleder and H. G. Unger, “Waveguide Tapers Transitions and Couplers”, (The Institution of Electrical Engineers, London and New York), p. 229-254 (1979).
    56. K. R. Chu, C. S. Kou, J. M. Chen, Y. C. Tsai, C. Cheng, S. S. Bor and L. H. Chang, Int. J. Infr. Millimeter Waves, 13, 1571 (1992).
    57. J. M. Baird and W. Lawson, Int. J. Electronics, 61, 953 (1986).
    58. C. F. Yu, T. H. Chang, IEEE Trans. Microwave Theory Tech. 53, 3794 (2005).
    59. T. H. Chang and N. C. Chen, Phys. Rev. E, 74, 016402 (2006).
    60. G. S. Nusinovich and O. V. Sinitsyn, Phys. Plasmas, 8, 3427 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE