研究生: |
陳彥君 Chen, Yen-Chun |
---|---|
論文名稱: |
雙層石墨烯中的能谷電子學之探討 Towards bilayer graphene based valleytronics |
指導教授: |
吳玉書
Wu, Yu-Shu 陳啟東 Chen, Chii-Dong |
口試委員: |
鄭舜仁
Cheng, Shun-Jen 朱仲夏 Chu, Chon-Saar 牟中瑜 Mou, Chung-Yu 李奕賢 Lee, Yi-Hsien 李瑞光 Lee, Ray-Kuang |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 132 |
中文關鍵詞: | 石墨烯 、雙層石墨烯 、能谷電子學 |
外文關鍵詞: | graphene, bilayer graphene, valleytronics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近代矽基半導體基本遵循摩爾定律作為發展準則;單位面積內場效電晶體數量逐年成倍成長,且對應製程成本為前一世代一半。科技進展首要考量高效能以及元件尺度微縮化之下耗能表現,但依照目前科技進程,元件尺寸微縮化即將觸碰到其對應的物理極限。工業界以及學術界為跳脫相關束縛皆發表了數種因應方案,例如,鰭式場效電晶體、探詢替代半導體材料(例如:石墨烯,以及過度金屬硫族化物),以及自旋電子學和能谷電子學的發展等等。自旋電子學為一跨領域學科,且係利用固態系統當中電子自旋自由度作為操控單元。相對的,能谷電子學則蘊含著類似的物理機制,但物理本質上具有甚大的差異。這本論文則著重在石墨烯層狀系統當中理論以及實驗能谷電子學的探討。
這本論文基本上分為以下幾個章節,理論以及實驗的探討分別位於章節2,以及章節3與4做討論。章節1首先介紹基本二維材料。章節2討論近代能谷電子學發展,以及在二維六角蜂巢結構晶格當中的相關應用。章節3鎖定石墨烯以及硼化氮垂直異質結構的探討。章節4則利用直接電漿曝射化學氣象沉積系統成長具有小角度分布雙層旋轉石墨烯薄膜之成長結果。以上部分皆和發展能谷電子學有碩大的關聯性。
The number of field-effect transistor (FETs) in a given unit area is doubled as described by Moore’s law, and a continuation of this trend eventually meets the challenge in association with the compelling demand of higher performance and lower power consumption in miniaturization. Both Industrial and academic affiliations have proposed and searched several technological options in order to resolve these issues, for instance, the development of FinFETs, potential substitute semiconductor materials such as graphene and transition metal dichalcogenides (TMDCs), and new device concepts like spintronics and valleytronics. It has been well known that spintronics is a multidisciplinary field whose central theme is the active manipulation of spin degree of freedom in solid-state systems. For valleytronics, analogous manipulation mechanism and physical concepts have been investigated but there are very significant differences. This thesis aims to explore valley pseudospin physics and corresponding applications, both theoretically and experimentally, in a well-known two-dimensional material, graphene and its bilayer structure (Bernal stacking bilayer graphene).
This thesis is separated into theoretical and experimental parts. Theoretical investigations will be presented in Chapter 2. Experimental demonstrations are given in Chapter 3 and Chapter 4. Chapter 1 focuses on a fundamental discussion of two-dimensional materials. Chapter 2 explains concepts of valley pseudospin physics in graphene systems with the breaking of inversion symmetry. The non-relativistic Schrodinger-type theory, valley-orbit interaction (VOI), and its associated mechanism will be covered. We also discuss potential applications based on VOI, for instance, valley FETs, valley filters, and valley qubits. In chapter 3, we discuss our experimental study of fundamental properties of h-BN and graphene system based vertical heterostructure. This study is beneficial for future work in realizing the valley pseudospin based electronics we have explored in recent years. In Chapter 4, we describe our experimental work where the direct plasma-enhanced chemical vapor deposition (PECVD) system was employed to grow mm-size large twisted bilayer graphene film, in which the spread of twisted-angle between layers can be controlled around 7o over mm-sized twisted bilayer graphene film. All these works are considered to be necessary fundamental efforts towards future valleytronic device realization.
1. Mistry, K., et al., A 45nm logic technology with high-k plus metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. 2007 Ieee International Electron Devices Meeting, Vols 1 and 2. 2007. 247-250.
2. Wu, G.Y., N.Y. Lue, and Y.C. Chen, Quantum manipulation of valleys in bilayer graphene. Physical Review B. 88(12).125422 (2013)
3. Dresselhaus, G., SPIN-ORBIT COUPLING EFFECTS IN ZINC BLENDE STRUCTURES. Physical Review. 100(2): p. 580-586 (1955)
4. Rashba, E.I., PROPERTIES OF SEMICONDUCTORS WITH AN EXTREMUM LOOP .1. CYCLOTRON AND COMBINATIONAL RESONANCE IN A MAGNETIC FIELD PERPENDICULAR TO THE PLANE OF THE LOOP. Soviet Physics-Solid State. 2(6): p. 1109-1122 (1960)
5. Chappert, C., A. Fert, and F.N. Van Dau, The emergence of spin electronics in data storage. Nature Materials. 6(11): p. 813-823 (2007)
6. Jungwirth, T., J. Wunderlich, and K. Olejnik, Spin Hall effect devices. Nature Materials. 11(5): p. 382-390 (2012)
7. Datta, S. and B. Das, ELECTRONIC ANALOG OF THE ELECTROOPTIC MODULATOR. Applied Physics Letters. 56(7): p. 665-667 (1990)
8. Wunderlich, J., et al., Spin Hall Effect Transistor. Science. 330(6012): p. 1801-1804 (2010)
9. Lee, M.K., et al., Valley-based field-effect transistors in graphene. Physical Review B. 86(16).165411 (2012)
10. (!!! INVALID CITATION !!! [10-12])
11. Cheng, H.C., et al., Low-energy trions in graphene quantum dots. Physical Review B. 89(23): p. 20.235426 (2014)
12. Mermin, N.D., Crystalline Order in Two Dimensions. Physical Review. 176(1): p. 250-254 250(1968)
13. (!!! INVALID CITATION !!! [13])
14. Iijima, S., HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature. 354(6348): p. 56-58 (1991)
15. Wallace, P.R., THE BAND THEORY OF GRAPHITE. Physical Review. 71(9): p. 622-634 (1947)
16. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics. 81(1): p. 109-162 (2009)
17. Zhang, Y.B., et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature. 438(7065): p. 201-204 (2005)
18. Yan, J., et al., Electric field effect tuning of electron-phonon coupling in graphene. Physical Review Letters. 98(16): p. 4.166802 (2007)
19. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials. 6(3): p. 183-191 (2007)
20. Hwang, E.H., S. Adam, and S. Das Sarma, Carrier transport in two-dimensional graphene layers. Physical Review Letters. 98(18).186806 (2007)
21. Morozov, S.V., et al., Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters. 100(1).016602 (2008)
22. Katsnelson, M.I., Zitterbewegung, chirality, and minimal conductivity in graphene. European Physical Journal B. 51(2): p. 157-160 (2006)
23. Tworzydlo, J., et al., Sub-Poissonian shot noise in graphene. Physical Review Letters. 96(24).246802 (2006)
24. Martin, J., et al., Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nature Physics. 4(2): p. 144-148 (2008)
25. Fasolino, A., J.H. Los, and M.I. Katsnelson, Intrinsic ripples in graphene. Nature Materials. 6(11): p. 858-861 (2007)
26. Nam, S.G., D.K. Ki, and H.J. Lee, Thermoelectric transport of massive Dirac fermions in bilayer graphene. Physical Review B. 82(24).245416 (2010)
27. Gorbachev, R.V., et al., Detecting topological currents in graphene superlattices. Science. 346(6208): p. 448-451 (2014)
28. Sui, M.Q., et al., Gate-tunable topological valley transport in bilayer graphene. Nature Physics. 11(12): p. 1027-1031 (2015)
29. Shimazaki, Y., et al., Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nature Physics. 11(12): p. 1032-1036 (2015)
30. Komatsu, K., et al., Observation of the quantum valley Hall state in ballistic graphene superlattices. Science Advances. 4(5).eaaq0194 (2018)
31. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science. 306(5696): p. 666-669 (2004)
32. Lemme, M.C., et al., A graphene field-effect device. Ieee Electron Device Letters. 28(4): p. 282-284 (2007)
33. Han, M.Y., et al., Energy band-gap engineering of graphene nanoribbons. Physical Review Letters. 98(20): p. 4.206805 (2007)
34. Areshkin, D.A. and C.T. White, Building blocks for integrated graphene circuits. Nano Letters. 7(11): p. 3253-3259 (2007)
35. Lin, Y.M., et al., Operation of Graphene Transistors at Gigahertz Frequencies. Nano Letters. 9(1): p. 422-426 (2009)
36. Ohta, T., et al., Controlling the electronic structure of bilayer graphene. Science. 313(5789): p. 951-954 (2006)
37. Castro, E.V., et al., Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Physical Review Letters. 99(21): p. 4.216802 (2007)
38. Oostinga, J.B., et al., Gate-induced insulating state in bilayer graphene devices. Nature Materials. 7(2): p. 151-157 (2008)
39. Luican, A., et al., Single-Layer Behavior and Its Breakdown in Twisted Graphene Layers. Physical Review Letters. 106(12).126802 (2011)
40. Wang, Z.F., F. Liu, and M.Y. Chou, Fractal Landau-Level Spectra in Twisted Bilayer Graphene. Nano Letters. 12(7): p. 3833-3838 (2012)
41. Roy, H.V., C. Kallinger, and K. Sattler, Study of single and multiple foldings of graphitic sheets. Surface Science. 407(1-3): p. 1-6 (1998)
42. Lee, J.K., et al., The growth of AA graphite on (111) diamond. Journal of Chemical Physics. 129(23): p. 4.234709 (2008)
43. Zhao, R.Q., et al., Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films. Nano Research. 4(7): p. 712-721 (2011)
44. Li, G.H., et al., Observation of Van Hove singularities in twisted graphene layers. Nature Physics. 6(2): p. 109-113 (2010)
45. Moon, P. and M. Koshino, Energy spectrum and quantum Hall effect in twisted bilayer graphene. Physical Review B. 85(19).195458 (2012)
46. Morell, E.S., et al., Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Physical Review B. 82(12).121407 (2010)
47. Cao, Y., et al., Unconventional superconductivity in magic-angle graphene superlattices. Nature. 556(7699): p. 43-50 (2018)
48. Yankowitz, M., et al., Tuning superconductivity in twisted bilayer graphene. Science. 363(6431): p. 1059-1064 (2019)
49. Roy, B. and V. Juricic, Unconventional superconductivity in nearly flat bands in twisted bilayer graphene. Physical Review B. 99(12): p. 5.121407 (2019)
50. Gonzalez, J. and T. Stauber, Kohn-Luttinger Superconductivity in Twisted Bilayer Graphene. Physical Review Letters. 122(2): p. 6.026801 (2019)
51. Read, N. and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Physical Review B. 61(15): p. 10267-10297 (2000)
52. Nayak, C., et al., Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics. 80(3): p. 1083-1159 (2008)
53. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America. 102(30): p. 10451-10453 (2005)
54. Zhou, J.D., et al., A library of atomically thin metal chalcogenides. Nature. 556(7701): p. 355-359 (2018)
55. Potoczek, M., K. Przybylski, and M. Rekas, Defect structure and electrical properties of molybdenum disulphide. Journal of Physics and Chemistry of Solids. 67(12): p. 2528-2535 (2006)
56. Li, C., et al., Role of Boundary Layer Diffusion in Vapor Deposition Growth of Chalcogenide Nanosheets: The Case of GeS. Acs Nano. 6(10): p. 8868-8877 (2012)
57. Das, S., et al., High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Letters. 13(1): p. 100-105 (2013)
58. Du, Y.C., et al., MoS2 Field-Effect Transistors With Graphene/Metal Heterocontacts. Ieee Electron Device Letters. 35(5): p. 599-601 (2014)
59. McDonnell, S., et al., Defect-Dominated Doping and Contact Resistance in MoS2. Acs Nano. 8(3): p. 2880-2888 (2014)
60. Li, W., et al., Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Applied Physics Letters. 102(18): p. 5.183110 (2013)
61. Wang, L., et al., One-Dimensional Electrical Contact to a Two-Dimensional Material. Science. 342(6158): p. 614-617 (2013)
62. Chu, C.H., et al., End-Bonded Metal Contacts on WSe2 Field-Effect Transistors. Acs Nano. 13(7): p. 8146-8154 (2019)
63. Johari, P. and V.B. Shenoy, Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains. Acs Nano. 6(6): p. 5449-5456 (2012)
64. Yang, D., et al., STRUCTURE OF SINGLE-MOLECULAR-LAYER MOS2. Physical Review B. 43(14): p. 12053-12056 (1991)
65. Gordon, R.A., et al., Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Physical Review B. 65(12).125407 (2002)
66. Duerloo, K.A.N., Y. Li, and E.J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nature Communications. 5.4214 (2014)
67. Voiry, D., et al., Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials. 12(9): p. 850-855 (2013)
68. Tang, S.J., et al., Quantum spin Hall state in monolayer 1T '-WTe2. Nature Physics. 13(7): p. 683-687 (2017)
69. Wang, Y., et al., Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature. 550(7677): p. 487-491 (2017)
70. Xiao, D., et al., Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Physical Review Letters. 108(19): p. 5.196802 (2012)
71. Xu, X.D., et al., Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics. 10(5): p. 343-350 (2014)
72. Zeng, H.L., et al., Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology. 7(8): p. 490-493 (2012)
73. Kosmider, K., J.W. Gonzalez, and J. Fernandez-Rossier, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Physical Review B. 88(24).245436 (2013)
74. Roldan, R., et al., Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se). Annalen Der Physik. 526(9-10): p. 347-357 (2014)
75. Silva-Guillen, J.A., P. San-Jose, and R. Roldan, Electronic Band Structure of Transition Metal Dichalcogenides from Ab Initio and Slater-Koster Tight-Binding Model. Applied Sciences-Basel. 6(10).284 (2016)
76. Tsang, C.H., et al., Design, fabrication, and performance of spin-valve read heads for magnetic recording applications. Ibm Journal of Research and Development. 42(1): p. 103-116 (1998)
77. Tehrani, S., et al., Magnetoresistive random access memory using magnetic tunnel junctions. Proceedings of the Ieee. 91(5): p. 703-714 (2003)
78. Ralph, D.C. and M.D. Stiles, Spin transfer torques. Journal of Magnetism and Magnetic Materials. 320(7): p. 1190-1216 (2008)
79. Mott, N.F., The scattering of fast electrons by atomic nuclei. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character. 124(794): p. 425-442 (1929)
80. Nagaosa, N., Anomalous Hall effect - A new perspective. Journal of the Physical Society of Japan. 75(4).042001 (2006)
81. Dyakonov, M.I. and V.I. Perel, POSSIBILITY OF ORIENTING ELECTRON SPINS WITH CURRENT. Jetp Letters-Ussr. 13(11): p. 467 (1971)
82. Sinova, J., et al., Universal intrinsic spin Hall effect. Physical Review Letters. 92(12).126603 (2004)
83. Kato, Y.K., et al., Electrical initialization and manipulation of electron spins in an L-shaped strained n-InGaAs channel. Applied Physics Letters. 87(2): p. 3.022503 (2005)
84. Ghosh, S., et al., Internal magnetic field in thin ZnSe epilayers. Applied Physics Letters. 89(24).242116 (2006)
85. Chuang, P., et al., All-electric all-semiconductor spin field-effect transistors. Nature Nanotechnology. 10(1): p. 35-39 (2015)
86. Thompson, S.E., et al., A 90-nm logic technology featuring strained-silicon. Ieee Transactions on Electron Devices. 51(11): p. 1790-1797 (2004)
87. Zhang, W., et al., Strain-engineering tunable electron mobility of monolayer IV-V group compounds. Nanoscale. 10(35): p. 16750-16758 (2018)
88. Laird, E.A., F. Pei, and L.P. Kouwenhoven, A valley-spin qubit in a carbon nanotube. Nature Nanotechnology. 8(8): p. 565-568 (2013)
89. Goswami, S., et al., Controllable valley splitting in silicon quantum devices. Nature Physics. 3(1): p. 41-45 (2007)
90. Zwanenburg, F.A., et al., Silicon quantum electronics. Reviews of Modern Physics. 85(3): p. 961-1019 (2013)
91. Bishop, N.C., et al., Valley polarization and susceptibility of composite fermions around a filling factor v = (3)/(2). Physical Review Letters. 98(26).266404 (2007)
92. Zhu, Z.W., et al., Field-induced polarization of Dirac valleys in bismuth. Nature Physics. 8(1): p. 89-94 (2012)
93. Nebel, C.E., VALLEYTRONICS Electrons dance in diamond. Nature Materials. 12(8): p. 690-691 (2013)
94. Thonhauser, T., et al., Orbital magnetization in periodic insulators. Physical Review Letters. 95(13).137205 (2005)
95. Ceresoli, D., et al., Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals. Physical Review B. 74(2).024408 (2006)
96. Koshino, M. and T. Ando, Anomalous orbital magnetism in Dirac-electron systems: Role of pseudospin paramagnetism. Physical Review B. 81(19).195431 (2010)
97. Aivazian, G., et al., Magnetic control of valley pseudospin in monolayer WSe2. Nature Physics. 11(2): p. 148-152 (2015)
98. Yao, W., D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking. Physical Review B. 77(23): p. 7.235406 (2008)
99. Inoue, J., Valley-contrastive selection rules of a nonlinear optical transition in graphene with an energy gap. Physical Review B. 83(20).205404 (2011)
100. Koshino, M., Chiral orbital current and anomalous magnetic moment in gapped graphene. Physical Review B. 84(12).125427 (2011)
101. Mak, K.F., et al., The valley Hall effect in MoS2 transistors. Science. 344(6191): p. 1489-1492 (2014)
102. Li, Y.L., et al., Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2. Physical Review Letters. 113(26): p. 5.266804 (2014)
103. Srivastava, A., et al., Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nature Physics. 11(2): p. 141-147 (2015)
104. Lee, J., K.F. Mak, and J. Shan, Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nature Nanotechnology. 11(5): p. 421-425 (2016)
105. Hung, T.Y.T., et al., Direct observation of valley-coupled topological current in MoS2. Science Advances. 5(4).eaau6478 (2019)
106. Cahangirov, S., et al., Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Physical Review Letters. 102(23).236804 (2009)
107. Kara, A., et al., A review on silicene - New candidate for electronics. Surface Science Reports. 67(1): p. 1-18 (2012)
108. McCann, E. and V.I. Fal'ko, Landau-level degeneracy and quantum hall effect in a graphite bilayer. Physical Review Letters. 96(8).086805 (2006)
109. McCann, E., Asymmetry gap in the electronic band structure of bilayer graphene. Physical Review B. 74(16).161403 (2006)
110. Gunlycke, D. and C.T. White, Graphene Valley Filter Using a Line Defect. Physical Review Letters. 106(13).136806 (2011)
111. Lue, N.Y., Y.C. Chen, and G.Y. Wu, Valley-based field-effect transistors in graphene (vol 86, 165411, 2012). Physical Review B. 87(3).039904 (2013)
112. Giovannetti, G., et al., Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review B. 76(7).073103 (2007)
113. Wirthmann, A., et al., Weak antilocalization in InAs quantum wires. Physica E-Low-Dimensional Systems & Nanostructures. 34(1-2): p. 493-496 (2006)
114. Schmidt, G., et al., Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Physical Review B. 62(8): p. R4790-R4793 (2000)
115. Rashba, E.I., Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Physical Review B. 62(24): p. R16267-R16270 (2000)
116. Gelabert, M.M., et al., Multichannel effects in Rashba quantum wires. Physical Review B. 81(16).165317 (2010)
117. Nemnes, G.A., et al., Reduction of ballistic spin scattering in a spin-FET using stray electric fields, in Advanced Many-Body and Statistical Methods in Mesoscopic Systems. 2012. p. 338, 012012.
118. Streda, P. and P. Seba, Antisymmetric spin filtering in one-dimensional electron systems with uniform spin-orbit coupling. Physical Review Letters. 90(25).256601 (2003)
119. Barends, R., et al., Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature. 508(7497): p. 500-503 (2014)
120. Castelvecchi, D., Quantum computers ready to leap out of the lab in 2017. Nature. 541(7635): p. 9-10 (2017)
121. Scarlino, P., et al., Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit. Nature Communications. 10.3011 (2019)
122. Barrett, M.D., et al., Sympathetic cooling of Be-9(+) and Mg-24(+) for quantum logic. Physical Review A. 68(4).042302 (2003)
123. Brown, K.R., et al., Single-qubit-gate error below 10(-4) in a trapped ion. Physical Review A. 84(3): p. 4.030303 (2011)
124. Tan, T.R., et al., Multi-element logic gates for trapped-ion qubits. Nature. 528(7582): p. 380-383 (2015)
125. Muhonen, J.T., et al., Storing quantum information for 30 seconds in a nanoelectronic device. Nature Nanotechnology. 9(12): p. 986-991 (2014)
126. Veldhorst, M., et al., A two-qubit logic gate in silicon. Nature. 526(7573): p. 410-414 (2015)
127. Waldherr, G., et al., Quantum error correction in a solid-state hybrid spin register. Nature. 506(7487): p. 204-207 (2014)
128. Dolde, F., et al., High-fidelity spin entanglement using optimal control. Nature Communications. 5.3371 (2014)
129. Loss, D. and D.P. DiVincenzo, Quantum computation with quantum dots. Physical Review A. 57(1): p. 120-126 (1998)
130. Levy, J., Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Physical Review Letters. 89(14).147902 (2002)
131. Taylor, J.M., et al., Solid-state circuit for spin entanglement generation and purification. Physical Review Letters. 94(23): p. 4.236803 (2005)
132. Burkard, G., D. Loss, and D.P. DiVincenzo, Coupled quantum dots as quantum gates. Physical Review B. 59(3): p. 2070-2078 (1999)
133. Borhani, M. and X.D. Hu, Spin manipulation and relaxation in spin-orbit qubits. Physical Review B. 85(12).125132 (2012)
134. Xiao, D., W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport. Physical Review Letters. 99(23): p. 4.236809 (2007)
135. Wu, G.Y., N.Y. Lue, and L. Chang, Graphene quantum dots for valley-based quantum computing: A feasibility study. Physical Review B. 84(19): p. 13.195463 (2011)
136. Wu, G.Y. and N.Y. Lue, Graphene-based qubits in quantum communications. Physical Review B. 86(4): p. 13.045456 (2012)
137. Taylor, J.M., et al., Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nature Physics. 1(3): p. 177-183 (2005)
138. Petta, J.R., et al., Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science. 309(5744): p. 2180-2184 (2005)
139. Yu, H.Y., et al., Valley excitons in two-dimensional semiconductors. National Science Review. 2(1): p. 57-70 (2015)
140. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature. 499(7459): p. 419-425 (2013)
141. Liu, G.B., et al., Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides. New Journal of Physics. 16: p. 23.105011 (2014)
142. Yin, Z.Y., et al., Single-Layer MoS2 Phototransistors. Acs Nano. 6(1): p. 74-80 (2012)
143. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology. 8(7): p. 497-501 (2013)
144. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nature Materials. 6(9): p. 652-655 (2007)
145. Hwang, E.H., S. Adam, and S. Das Sarma, Transport in chemically doped graphene in the presence of adsorbed molecules. Physical Review B. 76(19): p. 6.195421 (2007)
146. Katsnelson, M.I. and A.K. Geim, Electron scattering on microscopic corrugations in graphene. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences. 366(1863): p. 195-204 (2008)
147. Ishigami, M., et al., Atomic structure of graphene on SiO2. Nano Letters. 7(6): p. 1643-1648 (2007)
148. Ando, T., Screening effect and impurity scattering in monolayer graphene. Journal of the Physical Society of Japan. 75(7).074716 (2006)
149. Nomura, K. and A.H. MacDonald, Quantum transport of massless dirac fermions. Physical Review Letters. 98(7).076602 (2007)
150. Jayaraman, R. and C.G. Sodini, A 1/F NOISE TECHNIQUE TO EXTRACT THE OXIDE TRAP DENSITY NEAR THE CONDUCTION-BAND EDGE OF SILICON. Ieee Transactions on Electron Devices. 36(9): p. 1773-1782 (1989)
151. Bolotin, K.I., et al., Temperature-dependent transport in suspended graphene. Physical Review Letters. 101(9).096802 (2008)
152. Du, X., et al., Approaching ballistic transport in suspended graphene. Nature Nanotechnology. 3(8): p. 491-495 (2008)
153. Lafkioti, M., et al., Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions. Nano Letters. 10(4): p. 1149-1153 (2010)
154. Liao, L., et al., Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors. Nanotechnology. 21(1): p. 5.015705 (2010)
155. Watanabe, K., T. Taniguchi, and H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials. 3(6): p. 404-409 (2004)
156. Lui, C.H., et al., Ultraflat graphene. Nature. 462(7271): p. 339-341 (2009)
157. Young, A.F., et al., Electronic compressibility of layer-polarized bilayer graphene. Physical Review B. 85(23): p. 5.235458 (2012)
158. Zhang, Y.B., et al., Origin of spatial charge inhomogeneity in graphene. Nature Physics. 5(10): p. 722-726 (2009)
159. Deshpande, A., et al., Spatially resolved spectroscopy of monolayer graphene on SiO2. Physical Review B. 79(20).205411 (2009)
160. Bolotin, K.I., et al., Observation of the fractional quantum Hall effect in graphene. Nature. 462(7270): p. 196-199 (2009)
161. Elias, D.C., et al., Dirac cones reshaped by interaction effects in suspended graphene. Nature Physics. 7(9): p. 701-704 (2011)
162. Gorbachev, R.V., et al., Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Physics. 8(12): p. 896-901 (2012)
163. Kim, K., et al., Tunable moire bands and strong correlations in small-twist-angle bilayer graphene. Proceedings of the National Academy of Sciences of the United States of America. 114(13): p. 3364-3369 (2017)
164. Huang, S., et al., Topologically Protected Helical States in Minimally Twisted Bilayer Graphene. Physical Review Letters. 121(3): p. 6.037702 (2018)
165. Yankowitz, M., et al., Dynamic band-structure tuning of graphene moire superlattices with pressure. Nature. 557(7705): p. 404-408 (2018)
166. Das Sarma, S., E.H. Hwang, and E. Rossi, Theory of carrier transport in bilayer graphene. Physical Review B. 81(16).161407 (2010)
167. Gannett, W., et al., Boron nitride substrates for high mobility chemical vapor deposited graphene. Applied Physics Letters. 98(24).242105 (2011)
168. Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology. 5(10): p. 722-726 (2010)
169. Gomez-Navarro, C., et al., Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters. 7(11): p. 3499-3503 (2007)
170. Kudin, K.N., et al., Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters. 8(1): p. 36-41 (2008)
171. Niyogi, S., et al., Solution properties of graphite and graphene. Journal of the American Chemical Society. 128(24): p. 7720-7721 (2006)
172. Berger, C., et al., Electronic confinement and coherence in patterned epitaxial graphene. Science. 312(5777): p. 1191-1196 (2006)
173. Virojanadara, C., et al., Homogeneous large-area graphene layer growth on 6H-SiC(0001). Physical Review B. 78(24).245403 (2008)
174. Stankovich, S., et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 45(7): p. 1558-1565 (2007)
175. Li, X.S., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 324(5932): p. 1312-1314 (2009)
176. Chan, S.H., et al., Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition. Nanoscale Research Letters. 8: p. 5.285 (2013)
177. Malesevic, A., et al., Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology. 19(30).305604 (2008)
178. Hao, Y.F., et al., The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science. 342(6159): p. 720-723 (2013)
179. Coletti, C., et al., Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Physical Review B. 81(23).235401 (2010)
180. Hass, J., et al., Why multilayer graphene on 4H-SiC(000(1)over-bar) behaves like a single sheet of graphene. Physical Review Letters. 100(12).125504 (2008)
181. Sprinkle, M., et al., Multilayer epitaxial graphene grown on the SiC (000(1)over-bar) surface; structure and electronic properties. Journal of Physics D-Applied Physics. 43(37): p. 12.374006 (2010)
182. Emtsev, K.V., et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials. 8(3): p. 203-207 (2009)
183. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology. 5(8): p. 574-578 (2010)
184. Yu, Q.K., et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials. 10(6): p. 443-449 (2011)
185. Huang, P.Y., et al., Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature. 469(7330): p. 389-393 (2011)
186. An, J.H., et al., Domain (Grain) Boundaries and Evidence of "Twinlike" Structures in Chemically Vapor Deposited Grown Graphene. Acs Nano. 5(4): p. 2433-2439 (2011)
187. Farmer, D.B., et al., Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices. Nano Letters. 9(1): p. 388-392 (2009)
188. Li, X.S., et al., Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters. 10(11): p. 4328-4334 (2010)
189. Cao, H.L., et al., Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization. Applied Physics Letters. 96(12): p. 3.122106 (2010)
190. Wu, W., et al., Growth of Single Crystal Graphene Arrays by Locally Controlling Nucleation on Polycrystalline Cu Using Chemical Vapor Deposition. Advanced Materials. 23(42): p. 4898-4903 (2011)
191. Chen, S.S., et al., Millimeter-Size Single-Crystal Graphene by Suppressing Evaporative Loss of Cu During Low Pressure Chemical Vapor Deposition. Advanced Materials. 25(14): p. 2062-2065 (2013)
192. Gao, L.B., et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications. 3: p. 7.699 (2012)
193. Britnell, L., et al., Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers. Nano Letters. 12(3): p. 1707-1710 (2012)
194. Mak, K.F., et al., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters. 105(13).136805 (2010)
195. Xi, X.X., et al., Ising pairing in superconducting NbSe2 atomic layers. Nature Physics. 12(2): p. 139-143 (2016)
196. Xi, X.X., et al., Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotechnology. 10(9): p. 765-769 (2015)
197. Fei, Z.Y., et al., Edge conduction in monolayer WTe2. Nature Physics. 13(7): p. 677-682 (2017)
198. Wu, S.F., et al., Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science. 359(6371): p. 76-79 (2018)
199. Huang, B., et al., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 546(7657): p. 270-273 (2017)
200. Cao, Y., et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature. 556(7699): p. 80-84 (2018)
201. Ponomarenko, L.A., et al., Cloning of Dirac fermions in graphene superlattices. Nature. 497(7451): p. 594-597 (2013)
202. Dean, C.R., et al., Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices. Nature. 497(7451): p. 598-602 (2013)
203. Xue, J.M., et al., Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Materials. 10(4): p. 282-285 (2011)
204. Ferrari, A.C. and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 61(20): p. 14095-14107 (2000)
205. Dumont, M., et al., Chemical, microstructural and thermal analyses of a naphthalene-derived mesophase pitch. Carbon. 40(9): p. 1475-1486 (2002)
206. Garcia, A.G.F., et al., Effective Cleaning of Hexagonal Boron Nitride for Graphene Devices. Nano Letters. 12(9): p. 4449-4454 (2012)
207. Wood, J.D., et al., Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnology. 26(5): p. 9.055302 (2015)
208. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 457(7230): p. 706-710 (2009)
209. Reina, A., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters. 9(1): p. 30-35 (2009)
210. Castellanos-Gomez, A., et al., Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials. 1(1).011002 (2014)
211. Gorbachev, R.V., et al., Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small. 7(4): p. 465-468 (2011)
212. Arenal, R., et al., Raman spectroscopy of single-wall boron nitride nanotubes. Nano Letters. 6(8): p. 1812-1816 (2006)
213. Pisana, S., et al., Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Materials. 6(3): p. 198-201 (2007)
214. Das, A., et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology. 3(4): p. 210-215 (2008)
215. Feldman, B.E., J. Martin, and A. Yacoby, Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nature Physics. 5(12): p. 889-893 (2009)
216. Boyd, D.A., et al., Single-step deposition of high-mobility graphene at reduced temperatures. Nature Communications. 6: p. 8.6620 (2015)
217. Wang, H.M., et al., Hysteresis of Electronic Transport in Graphene Transistors. Acs Nano. 4(12): p. 7221-7228 (2010)
218. Geim, A.K., Graphene: Status and Prospects. Science. 324(5934): p. 1530-1534 (2009)
219. Yeh, N.C., et al., Single-step growth of graphene and graphene-based nanostructures by plasma-enhanced chemical vapor deposition. Nanotechnology. 30(16).162001 (2019)
220. Koshino, M. and T. Ando, Orbital diamagnetism in multilayer graphenes: Systematic study with the effective mass approximation. Physical Review B. 76(8).085425 (2007)
221. Nilsson, J., et al., Electronic properties of bilayer and multilayer graphene. Physical Review B. 78(4).045405 (2008)
222. Min, H.K. and A.H. MacDonald, Chiral decomposition in the electronic structure of graphene multilayers. Physical Review B. 77(15).155416 (2008)
223. Koshino, M. and E. McCann, Trigonal warping and Berry's phase N pi in ABC-stacked multilayer graphene. Physical Review B. 80(16).165409 (2009)
224. Zhang, F., et al., Band structure of ABC-stacked graphene trilayers. Physical Review B. 82(3).035409 (2010)
225. Wang, Y.Y., et al., Stacking-Dependent Optical Conductivity of Bilayer Graphene. Acs Nano. 4(7): p. 4074-4080 (2010)
226. Ghosh, S., et al., Dimensional crossover of thermal transport in few-layer graphene. Nature Materials. 9(7): p. 555-558 (2010)
227. Bistritzer, R. and A.H. MacDonald, Moire bands in twisted double-layer graphene. Proceedings of the National Academy of Sciences of the United States of America. 108(30): p. 12233-12237 (2011)
228. Schmidt, H., et al., Mobilities and scattering times in decoupled graphene monolayers. Physical Review B. 81(12).121403 (2010)
229. Dobrik, G., et al., Crystallographically oriented high resolution lithography of graphene nanoribbons by STM lithography. Physica Status Solidi B-Basic Solid State Physics. 247(4): p. 896-902 (2010)
230. Terasawa, T. and K. Saiki, Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon. 50(3): p. 869-874 (2012)
231. Ferrari, A.C. and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology. 8(4): p. 235-246 (2013)
232. Ferrari, A.C., et al., Raman spectrum of graphene and graphene layers. Physical Review Letters. 97(18).187401 (2006)
233. Dresselhaus, M.S., et al., Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Letters. 10(3): p. 751-758 (2010)
234. Gupta, A., et al., Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Letters. 6(12): p. 2667-2673 (2006)
235. Sprinkle, M., et al., First Direct Observation of a Nearly Ideal Graphene Band Structure. Physical Review Letters. 103(22).226803 (2009)
236. Miller, D.L., et al., Observing the Quantization of Zero Mass Carriers in Graphene. Science. 324(5929): p. 924-927 (2009)
237. Sato, K., et al., Zone folding effect in Raman G-band intensity of twisted bilayer graphene. Physical Review B. 86(12).125414 (2012)
238. Yeh, C.H., et al., Gating Electron-Hole Asymmetry in Twisted Bilayer Graphene. Acs Nano. 8(7): p. 6962-6969 (2014)
239. Nonnenmacher, M., M.P. Oboyle, and H.K. Wickramasinghe, KELVIN PROBE FORCE MICROSCOPY. Applied Physics Letters. 58(25): p. 2921-2923 (1991)
240. Kitamura, S. and M. Iwatsuki, High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope. Applied Physics Letters. 72(24): p. 3154-3156 (1998)
241. Ziegler, D., et al., Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory. Physical Review B. 83(23).235434 (2011)
242. Mele, E.J., Commensuration and interlayer coherence in twisted bilayer graphene. Physical Review B. 81(16).161405 (2010)
243. Cisternas, E., M. Flores, and P. Vargas, Superstructures in arrays of rotated graphene layers: Electronic structure calculations. Physical Review B. 78(12).125406 (2008)
244. Li, X.S., et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters. 9(12): p. 4268-4272 (2009)
245. Bhaviripudi, S., et al., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Letters. 10(10): p. 4128-4133 (2010)
246. Wu, F.Y., G. Levitin, and D.W. Hess, Low-Temperature Etching of Cu by Hydrogen-Based Plasmas. Acs Applied Materials & Interfaces. 2(8): p. 2175-2179 (2010)
247. Vlassiouk, I., et al., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. Acs Nano. 5(7): p. 6069-6076 (2011)
248. Lucchese, M.M., et al., Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon. 48(5): p. 1592-1597 (2010)
249. Cancado, L.G., et al., Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Letters. 11(8): p. 3190-3196 (2011)
250. Thomsen, C. and S. Reich, Doable resonant Raman scattering in graphite. Physical Review Letters. 85(24): p. 5214-5217 (2000)
251. Kim, K., et al., Raman Spectroscopy Study of Rotated Double-Layer Graphene: Misorientation-Angle Dependence of Electronic Structure. Physical Review Letters. 108(24): p. 6.246103 (2012)
252. Lu, C.C., et al., Twisting Bilayer Graphene Superlattices. Acs Nano. 7(3): p. 2587-2594 (2013)
253. Gupta, A.K., et al., Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Physical Review B. 82(24): p. 4.241406 (2010)
254. He, R., et al., Observation of Low Energy Raman Modes in Twisted Bilayer Graphene. Nano Letters. 13(8): p. 3594-3601 (2013)
255. Ramnani, P., et al., Raman spectra of twisted CVD bilayer graphene. Carbon. 123: p. 302-306 (2017)
256. Li, Q.Y., et al., Growth of Adlayer Graphene on Cu Studied by Carbon Isotope Labeling. Nano Letters. 13(2): p. 486-490 (2013)
257. Fang, W., et al., Rapid Identification of Stacking Orientation in Isotopically Labeled Chemical-Vapor Grown Bilayer Graphene by Raman Spectroscopy. Nano Letters. 13(4): p. 1541-1548 (2013)
258. Kang, Y.J., J. Kang, and K.J. Chang, Electronic structure of graphene and doping effect on SiO2. Physical Review B. 78(11): p. 5.115404 (2008)
259. Carozo, V., et al., Raman Signature of Graphene Superlattices. Nano Letters. 11(11): p. 4527-4534 (2011)
260. Havener, R.W., et al., Angle-Resolved Raman Imaging of Inter layer Rotations and Interactions in Twisted Bilayer Graphene. Nano Letters. 12(6): p. 3162-3167 (2012)
261. Wang, Y.Y., et al., Interference enhancement of Raman signal of graphene. Applied Physics Letters. 92(4): p. 3.043121 (2008)
262. Cocemasov, A.I., D.L. Nika, and A.A. Balandin, Phonons in twisted bilayer graphene. Physical Review B. 88(3).035428 (2013)
263. Jorio, A. and L.G. Cancado, Raman spectroscopy of twisted bilayer graphene. Solid State Communications. 175: p. 3-12 (2013)
264. Pimenta, M.A., et al., Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics. 9(11): p. 1276-1291 (2007)
265. Eckmann, A., et al., Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Physical Review B. 88(3).035426 (2013)
266. Sboychakov, A.O., et al., Electronic spectrum of twisted bilayer graphene. Physical Review B. 92(7).075402 (2015)
267. Ohta, T., et al., Evidence for Interlayer Coupling and Moire Periodic Potentials in Twisted Bilayer Graphene. Physical Review Letters. 109(18).186807 (2012)
268. Lin, W.H., et al., A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate. Acs Nano. 8(2): p. 1784-1791 (2014)
269. Andrei, E.Y., G.H. Li, and X. Du, Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Reports on Progress in Physics. 75(5): p. 47.056501 (2012)
270. Melitz, W., et al., Kelvin probe force microscopy and its application. Surface Science Reports. 66(1): p. 1-27 (2011)
271. Robinson, J.T., et al., Work Function Variations in Twisted Graphene Layers. Scientific Reports. 8.2006 (2018)
272. Panchal, V., et al., Standardization of surface potential measurements of graphene domains. Scientific Reports. 3.2597 (2013)
273. Burnett, T., R. Yakimova, and O. Kazakova, Mapping of Local Electrical Properties in Epitaxial Graphene Using Electrostatic Force Microscopy. Nano Letters. 11(6): p. 2324-2328 (2011)
274. Stampfer, C., et al., Raman imaging of doping domains in graphene on SiO2. Applied Physics Letters. 91(24).241907 (2007)
275. Giannazzo, F., et al., Screening Length and Quantum Capacitance in Graphene by Scanning Probe Microscopy. Nano Letters. 9(1): p. 23-29 (2009)
276. Yu, Y.J., et al., Tuning the Graphene Work Function by Electric Field Effect. Nano Letters. 9(10): p. 3430-3434 (2009)
277. Bussmann, B.K., O. Ochedowski, and M. Schleberger, Doping of graphene exfoliated on SrTiO3. Nanotechnology. 22(26).265703 (2011)
278. Shan, B. and K.J. Cho, First principles study of work functions of single wall carbon nanotubes. Physical Review Letters. 94(23): p. 4.236602 (2005)
279. Ooi, N., A. Rairkar, and J.B. Adams, Density functional study of graphite bulk and surface properties. Carbon. 44(2): p. 231-242 (2006)
280. Sque, S.J., R. Jones, and P.R. Briddon, The transfer doping of graphite and graphene. Physica Status Solidi a-Applications and Materials Science. 204(9): p. 3078-3084 (2007)
281. Filleter, T., et al., Local work function measurements of epitaxial graphene. Applied Physics Letters. 93(13).133117 (2008)
282. Datta, S.S., et al., Surface Potentials and Layer Charge Distributions in Few-Layer Graphene Films. Nano Letters. 9(1): p. 7-11 (2009)
283. Giovannetti, G., et al., Doping graphene with metal contacts. Physical Review Letters. 101(2).026803 (2008)
284. Hibino, H., et al., Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Physical Review B. 79(12): p. 7.125437 (2009)
285. Yang, S.B., et al., Direct observation of the work function evolution of graphene-two-dimensional metal contacts. Journal of Materials Chemistry C. 2(38): p. 8042-8046 (2014)
286. Tan, Y.W., et al., Measurement of scattering rate and minimum conductivity in graphene. Physical Review Letters. 99(24): p. 4.246803 (2007)
287. Jang, C., et al., Tuning the effective fine structure constant in graphene: Opposing effects of dielectric screening on short- and long-range potential scattering. Physical Review Letters. 101(14).146805 (2008)
288. Chen, J.H., et al., Charged-impurity scattering in graphene. Nature Physics. 4(5): p. 377-381 (2008)
289. Li, X.S., et al., Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society. 133(9): p. 2816-2819 (2011)
290. Hwang, E.H. and S. Das Sarma, Insulating behavior in metallic bilayer graphene: Interplay between density inhomogeneity and temperature. Physical Review B. 82(8).081409 (2010)
291. Li, Q.Z., E.H. Hwang, and S. Das Sarma, Disorder-induced temperature-dependent transport in graphene: Puddles, impurities, activation, and diffusion. Physical Review B. 84(11).115442 (2011)
292. Zhu, W.J., et al., Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Physical Review B. 80(23).235402 (2009)
293. Zou, K. and J. Zhu, Transport in gapped bilayer graphene: The role of potential fluctuations. Physical Review B. 82(8): p. 4.081407 (2010)
294. Bolotin, K.I., et al., Temperature-dependent transport in suspended graphene. Physical Review Letters. 101(9): p. 4.096802 (2008)
295. Heo, J., et al., Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition. Physical Review B. 84(3).035421 (2011)