簡易檢索 / 詳目顯示

研究生: 鐘緯儒
Chung, Wei-Ju
論文名稱: 鄂惹電子造成DNA雙股斷裂之定量及冷凍作用對DNA結構完整性之研究
Quantum Yields of DNA Double-Strand Break Induced by Auger-Electron-Emitter and the Effect of Freezing on DNA Structure Integrity under Tensions
指導教授: 許志楧
Hsu, Ian C.
口試委員: 許文郁
Shu, Wun-Yi
崔豫笳
Cui, Yujia
楊自森
Yang, Tzu-Sen
陳之碩
Chen, Chi-Shuo
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 157
中文關鍵詞: 單分子技術雷射光鉗99m鎝輻射奈米劑量膠體電泳雙股螺旋斷裂冷凍作用DNA結構完整性鄂惹電子
外文關鍵詞: Single molecular technology, Optical tweezers, 99mTc, Radiation dosimetry, Gel electrophoresis, Double strand breaks, Freezing, DNA structural integrity, Auger electron
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 放射治療的主要作用是造成癌細胞遺傳物質的雙股螺旋斷裂,促進細胞自戕。傳統放射治療的缺點就是輻射造成周遭正常組織產生副作用。低能量的鄂惹電子(Auger electron)的好處是有效作用範圍是幾奈米以內,對周遭健康組織的影響可以降到最低。因此,鄂惹電子的射源99mTc是腫瘤治療上的一個好選擇。
    本研究主要想利用雷射光鉗系統在分子層次定量放射線物質99mTc造成DNA雙股螺旋斷裂的效果。利用雷射光鉗系統,生物素修飾的Lambda DNA在15 pN張力下,觀察放射性99mTc是否影響Lambda DNA雙股螺旋斷裂的發生時間。放射性99mTc被標定於一種DNA插入配體(ligand)上,以便將放射性物質盡可能靠近DNA分子並有效造成DNA 雙股斷裂。我們利用maximum likelihood estimation (MLE) 及bootstrapping simulations來估計Lambda DNA的平均壽命期(mean lifetime)及其誤差範圍。在控制組,我們發現Lambda DNA的平均壽命期是62.7分鐘,其誤差(95%信賴區間)落在47.5到85.3分鐘範圍內。當環境中只有配體時,我們發現DNA平均壽命期是90.9 分鐘,誤差範圍從69.7到123.1 分鐘。在低放射活度的環境中,我們發現DNA平均壽命期是114.0 分鐘,誤差範圍從85.5到159.2 分鐘。在高放射活度的環境中,DNA平均壽命期是132.3 分鐘,誤差範圍從97.6到189.2 分鐘。
    利用Lambda DNA的結構長度,我們可以瞭解配體插入DNA結構。控制組中Lambda DNA的結構長度是16.7 ± 0.2 μm (平均值±標準差)。當環境中只有配體時,結構長度是17.6 ± 0.3 μm。在低放射活度的環境中,結構長度是17.3 ± 0.5 μm;在高放射活度的環境中,結構長度是18.1 ± 0.9 μm。高輻射環境下,DNA結構長度的分布情況比其他實驗條件下的結果要寬,所以放射線破壞DNA結構完整性造成更多配體嵌入DNA 分子中。高輻射環境下DNA平均壽命期卻比控制組DNA平均壽命期長。所以我們要更深入研究這結果。
    實驗室中,核醫藥物的劑量學一般使用質體DNA和膠體電泳的方式來定量。本研究利用膠體電泳定量99mTc標誌的插入體(Intercalator)對質體DNA造成的傷害。在水溶液中,低放射劑量的範圍內,99mTc一次衰變造成平均雙股螺旋斷裂是0.011 ± 0.005;在有1M dimethyl sulfoxide (DMSO)的水溶液中,平均雙股螺旋斷裂則降低到0.0005 ± 0.0003。同樣的環境下,99mTc一次衰變造成平均單股螺旋斷裂是0.04 ± 0.02;在1M DMSO的水溶液中,平均單股螺旋斷裂下降至原來的1/5。平均雙股螺旋斷裂降低95%代表雙股螺旋斷裂發生的機制主要是輻射造成的非直接效應(Indirect effect),可能是放射性插入體在DNA 分子上的聚集作用所造成。利用無放射性插入體破壞放射性插入體的聚集作用,一次衰變造成單股螺旋斷裂的效果不變,但雙股螺旋斷裂則與DMSO存在下的值相同。所以,雙股螺旋斷裂主要是放射性插入體的群聚作用產生的非直接效應所造成。
    冷凍DNA 樣本是一般保存DNA 的方式。可是冷凍會影響DNA 分子的完整性。對於奈米技術的應用,DNA 結構完整性的改變可能會造成無法預期的結果,而且冷凍對DNA結構完整性的影響也尚未明瞭。所以利用雷射光鑷子來研究冷凍(-20 ºC)和冷藏(4 ºC)的Lambda DNA。評估DNA結構完整性的方式是測量DNA分子在受力(5-35 pN)下能維持多久才發生雙股螺旋斷裂。在5 pN,冷凍DNA的平均壽命期是44.3分鐘,95% 信賴區間(CI) 是36.7- 53.6 分鐘。冷藏的DNA分子的平均壽命期是133.2分鐘 (95% CI: 97.8-190.1分鐘)。在15 pN,冷凍DNA的平均壽命期是10.8分鐘 (95% CI: 7.6-12.6分鐘)。冷藏的DNA分子的平均壽命期是78.5分鐘(95% CI: 58.1-108.9分鐘)。所以冷凍確實改變DNA結構完整性,而且無法利用連接反應(Ligation)恢復DNA結構。


    Radiation therapy for cancer patients works by ionizing damage to nuclear DNA, primarily by creating DSB. A major shortcoming of traditional radiation therapy is the set of side effect associated with its long-range interaction with nearby tissues. Low-energy Auger electrons have the advantage of an extremely short effective range, minimizing damage to healthy tissue. Consequently, the isotope 99mTc, an Auger electron source, is currently being studied for its beneficial potential in cancer treatment. We examined the dose effect of a pyrene derivative 99mTc complex on lambda DNA by using dual-beam optical tweezers in aqueous solution. To quantify the yield of double-strand breaks (DSB) on DNA molecules per decay at a molecular level, we measured the sustaining time of DNA, which was stretched under constant force. Biotin-labeled nonfrozen linear form lambda DNA was connected to streptavidin-coated beads by which DNA molecules were sustained under 15 pN. Mean lifetimes of DNA strands sustained under 15 pN were determined by maximum likelihood estimates and variances were obtained through bootstrapping simulations. The mean lifetime of DNA without ligand was 62.7 min with a 95% confidence interval (CI) between 47.5 and 85.3 min. The mean lifetime of DNA with ligand was 90.9 min (95% CI: 69.7–123.1 min). The mean lifetime of DNA treated with low and high radiation was 114.0 min (95% CI: 85.5–159.2 min) and 132.3 min (95% CI: 97.6–189.2 min). Contour lengths of lambda DNA were calculated using the Worm-like chain model. The contour length of DNA without ligand was 16.7 ± 0.2 μm (average ± standard deviation) and that of DNA with ligand was 17.6 ± 0.3 μm. The contour lengths of DNA at low and high radiation were 17.3 ± 0.5 and 18.1 ± 0.9 μm, respectively. We determined that ligand intercalated to DNA because the contour lengths became longer when ligand existed in the solution. Radiation destroyed DNA integrities and more ligand was able to intercalate to DNA molecules because the distribution and standard deviation of contour lengths was spread out. Lifetimes at high radiation were longer than those under other conditions. We intend to conduct further research to verify these results.
    Dosimetry of radioactive medicines is usually quantified through plasmid DNA via agarose gel electrophoresis. We examined the dose effect of a pyrene derivative 99mTc complex on plasmid DNA by using gel electrophoresis in aqueous solution. In aqueous solutions, the average yield per decay for DSB is 0.011 ± 0.005 at low dose range, decreasing to 0.0005 ± 0.0003 in the presence of 1 M dimethyl sulfoxide (DMSO). The apparent yield per decay for single-strand breaks (SSB) is 0.04 ± 0.02, decreasing to approximately a fifth with 1 M DMSO. The 95% decrease in the yield of DSB in DMSO indicates that the main mechanism for DSB formation is through indirect effect, possibly by cooperative binding or clustering of intercalators. In the presence of non-radioactive ligands at a near saturation concentration, where radioactive Tc compounds do not form large clusters, the yield of SSB stays the same while the yield of DSB decreases to the value in DMSO. DSBs generated by 99mTc conjugated to intercalators are primarily caused by indirect effects through clustering.
    DNA samples are commonly frozen for storage. However, freezing can compromise the integrity of DNA molecules. Considering the wide applications of DNA molecules in nanotechnology, changes to DNA integrity at the molecular level may cause undesirable outcomes. However, the effects of freezing on DNA integrity have not been fully explored. To investigate the impact of freezing on DNA integrity, samples of frozen and non-frozen bacteriophage lambda DNA were studied using optical tweezers. Tension (5 to 35 pN) was applied to DNA molecules to mimic mechanical interactions between DNA and other biomolecules. The integrity of the DNA molecules was evaluated by measuring the time taken for single DNA molecules to break under tension. Mean lifetimes were determined by maximum likelihood estimates and variances were obtained through bootstrapping simulations. Under 5 pN of force, the mean lifetime of frozen samples is 44.3 min with 95% confidence interval (CI) between 36.7 min and 53.6 min while the mean lifetime of non-frozen samples is 133.2 min (95% CI: 97.8-190.1 min). Under 15 pN of force, the mean lifetimes are 10.8 min (95% CI: 7.6-12.6 min) and 78.5 min (95% CI: 58.1-108.9 min). The lifetimes of frozen DNA molecules are significantly reduced, implying that freezing compromises DNA integrity. Moreover, we found that the reduced DNA structural integrity cannot be restored using regular ligation process. These results indicate that freezing can alter the structural integrity of DNA molecules.

    中文摘要 1 Abstract 3 Part I Yields of DNA Double-Strand Break Induced by Auger-Electron-Emitter at Molecular Level 9 Introduction 10 Materials and Methods 16 99mTc-pyrene labelling process 16 Preparation of [99mTc (CO)3(OH2)3]+ solution 17 Preparation of 99mTc complex with APMED (99mTc-APMED) 17 Calculation of ratio of 99mTc-APMED to total Tc-APMED 18 Optical tweezers setup 20 The status of components in optical tweezers 20 Resolution of QPD signals to bead displacements 23 Measurement of pixels size in camera in microscope 23 The relation of AOD input frequency to scanning trap positions. 24 Trap stiffness calculation 25 Viscosity measurement of TE buffer with 4.6% Tween 80 27 Calculation of DNA contour length by optical tweezers. 28 Bacteriophage lambda DNA handling 30 Data analysis 32 Results and Discussions 34 Sustaining DNA with 99mTc-APMED in high salt under 5 and 15 pN 34 The effect of salt concentration on ligand intercalating on DNA molecules 35 The intercalation of various ligand concentrations on DNA molecules 36 The effect of Tween 80 on intercalation of ligand 38 The binding of ligand on different DNA integrities 39 Yield of DNA strand break by Auger electron emitter at molecular level 42 Conclusions 63 Part II Yields of DNA Double-Strand Break Induced by Auger-Electron-Emitter in Ensemble 64 Introduction 65 Materials and Methods 68 99mTc-pyrene labelling process 68 Preparation of [99mTc (CO)3(OH2)3]+ solution 68 Preparation of 99mTc complex with APMED (99mTc-APMED) 68 Preparation of pIRES plasmid DNA 69 Confirming pIRES plasmid by agarose gel 70 Effects of Tween 80 on DNA in gel electrophoresis 71 Gel electrophoresis analysis of strand breaks caused by 99mTc-APMED 72 Image analysis by Image J 73 Results and Discussions 75 DNA strand breaks by 99mTc-APMED in agarose gels 75 Quantification of strand break yield in buffered aqueous solution 80 DNA strand breaks by 99mTc-APMED in phosphate buffer 90 Conclusions 93 Part III Effect of Freezing on DNA Structural Integrity under Tensions 94 Introduction 95 Materials and Methods 98 Bacteriophage lambda DNA handling 98 Optical tweezers setup 98 Data analysis 100 Results and Discussions 102 Comparison of frozen and non-frozen lambda DNA integrity 102 Integrity of non-frozen lambda DNA from different batches 108 Conclusions 114 References 116 APPENDIX 122 99mTc-APMED labeling reaction 123 MES-HCl solution preparation 129 Lambda DNA Biotinylation process Checklist of Buffer and Device: 130 Protocol of Lambda DNA storage and Biotinylation of Lambda DNA 131 Biotin-labelled lambda DNA incubated with streptavidin-coated bead 135 Protocol of Rinsing streptavidin-coated polystyrene bead 136 Supercoiled DNA Transformation Materials Checklist 137 Plasmid Transformation and Purification 138 Steps for Preparing and operating optical tweezers system 143 Setting of scanning trap moving with constant velocity 145 Sequence of plasmid pIRES DNA 150 NMR spectrum of APMED 156

    1. Buchegger, F., Perillo-Adamer, F., Dupertuis, Y.M., Delaloye, A.B.: Auger radiation targeted into DNA: a therapy perspective. European journal of nuclear medicine and molecular imaging 33(11), 1352-1363 (2006). doi:10.1007/s00259-006-0187-2
    2. O'Donoghue, J.A., Wheldon, T.E.: Targeted radiotherapy using Auger electron emitters. Physics in medicine and biology 41(10), 1973-1992 (1996).
    3. Kassis, A.I.: The amazing world of auger electrons. International journal of radiation biology 80(11-12), 789-803 (2004). doi:10.1080/09553000400017663
    4. Kassis, A.I.: Cancer therapy with Auger electrons: are we almost there? Journal of nuclear medicine : official publication, Society of Nuclear Medicine 44(9), 1479-1481 (2003).
    5. Panyutin, I.G., Neumann, R.D.: The potential for gene-targeted radiation therapy of cancers. Trends in biotechnology 23(10), 492-496 (2005). doi:10.1016/j.tibtech.2005.08.001
    6. Terrissol, M., Edel, S., Pomplun, E.: Computer evaluation of direct and indirect damage induced by free and DNA‐bound Iodine‐125 in the chromatin fibre. International journal of radiation biology 80(11-12), 905-908 (2004). doi:10.1080/09553000400017622
    7. Häfliger, P., Agorastos, N., Spingler, B., Georgiev, O., Viola, G., Alberto, R.: Induction of DNA-Double-Strand Breaks by Auger Electrons from 99mTc Complexes with DNA-Binding Ligands. ChemBioChem 6(2), 414-421 (2005). doi:10.1002/cbic.200400210
    8. Bishayee, A., Rao, D.V., Howell, R.W.: Radiation protection by cysteamine against the lethal effects of intracellularly localized Auger electron, alpha- and beta-particle emitting radionuclides. Acta Oncol. 39(6), 713-720 (2000).
    9. Saha, G.B.: Fundamentals of Nuclear Pharmacy, 6 ed. Springer Science+Business Media, (2010)
    10. Sischka, A., Toensing, K., Eckel, R., Wilking, S.D., Sewald, N., Ros, R., Anselmetti, D.: Molecular mechanisms and kinetics between DNA and DNA binding ligands. Biophys J 88(1), 404-411 (2005). doi:10.1529/biophysj.103.036293
    11. Coury, J.E., McFail-Isom, L., Williams, L.D., Bottomley, L.A.: A novel assay for drug-DNA binding mode, affinity, and exclusion number: scanning force microscopy. Proceedings of the National Academy of Sciences of the United States of America 93(22), 12283-12286 (1996).
    12. Berg-Sørensen, K., Flyvbjerg, H.: Power spectrum analysis for optical tweezers. REVIEW OF SCIENTIFIC INSTRUMENTS 75(3), 1-19 (2004).
    13. Tolic-Nørrelykke, I.M., Berg-Sørensen, K., Flyvbjerg, H.: MatLab program for precision calibration of optical tweezers. Computer Physics Communications 159, 225-240 (2004).
    14. Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M.: Stretching DNA with Optical Tweezers. Biophysical Journal 72 (1997).
    15. Tessmer, I., Baumann, C.G., Skinner, G.M., Molloy, J.E., Hoggett, J.G., Tendler, S.J.B., Allen, S.: Mode of drug binding to DNA determined by optical tweezers force spectroscopy. Journal of Modern Optics 50(10), 1627-1636 (2003). doi:10.1080/09500340308235236
    16. Bayas, M.V., Leung, A., Evans, E., Leckband, D.: Lifetime measurements reveal kinetic differences between homophilic cadherin bonds. Biophys. J. 90(4), 1385-1395 (2006). doi:10.1529/biophysj.105.069583
    17. Shi, Q., Chien, Y.H., Leckband, D.: Biophysical properties of cadherin bonds do not predict cell sorting. J. Biol. Chem. 283(42), 28454-28463 (2008). doi:10.1074/jbc.M802563200
    18. Hada, M., Georgakilas, A.G.: Formation of Clustered DNA Damage after High-LET Irradiation: A Review. Journal of Radiation Research 49(3), 203-210 (2008). doi:10.1269/jrr.07123
    19. Shikazono, N., Noguchi, M., Fujii, K., Urushibara, A., Yokoya, A.: The Yield, Processing, and Biological Consequences of Clustered DNA Damage Induced by Ionizing Radiation. Journal of Radiation Research 50(1), 27-36 (2009). doi:10.1269/jrr.08086
    20. M. Sutherland, B., V. Bennett, P., Saparbaev, M., C. Sutherland, J., Laval, J.: Clustered DNA Damages as Dosemeters for Ionising Radiation Exposure and Biological Responses. Radiation Protection Dosimetry 97(1), 33-38 (2001).
    21. Eccles, L.J., O’Neill, P., Lomax, M.E.: Delayed repair of radiation induced clustered DNA damage: Friend or foe? Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 711(1–2), 134-141 (2011). doi:http://dx.doi.org/10.1016/j.mrfmmm.2010.11.003
    22. Haefliger, P., Agorastos, N., Renard, A., Giambonini-Brugnoli, G., Marty, C., Alberto, R.: Cell Uptake and Radiotoxicity Studies of an Nuclear Localization Signal Peptide−Intercalator Conjugate Labeled with [99mTc(CO)3]+. Bioconjugate Chemistry 16(3), 582-587 (2005). doi:10.1021/bc0500084
    23. Esteves, T., Marques, F., Paulo, A., Rino, J., Nanda, P., Smith, C.J., Santos, I.: Nuclear targeting with cell-specific multifunctional tricarbonyl M(I) (M is Re, 99mTc) complexes: synthesis, characterization, and cell studies. J Biol Inorg Chem 16(8), 1141-1153 (2011). doi:10.1007/s00775-011-0803-x
    24. Esteves, T., Xavier, C., Gama, S., Mendes, F., Raposinho, P.D., Marques, F., Paulo, A., Pessoa, J.C., Rino, J., Viola, G., Santos, I.: Tricarbonyl M(I) (M = Re, 99mTc) complexes bearing acridine fluorophores: synthesis, characterization, DNA interaction studies and nuclear targeting. Organic & Biomolecular Chemistry 8(18), 4104-4116 (2010). doi:10.1039/c0ob00073f
    25. De Mattos, J., Matos, V., Rodrigues, M., Oliveira, M., Dantas, F., Santos-Filho, S., Bernardo-Filho, M., Caldeira-de-Araujo, A.: Evaluation of Deoxyribonucleic Acid Toxicity Induced by the Radiopharmaceutical 99mTechnetium-Methylenediphosphonic Acid and by Stannous Chloride in Wistar Rats. Molecules 17(11), 12974-12983 (2012).
    26. Vitor, R.F., Esteves, T., Marques, F., Raposinho, P., Paulo, A., Rodrigues, S., Rueff, J., Casimiro, S., Costa, L., Santos, I.: 99mTc-Tricarbonyl Complexes Functionalized with Anthracenyl Fragments: Synthesis, Characterization, and Evaluation of Their Radiotoxic Effects in Murine Melanoma Cells. Cancer Biotherapy & Radiopharmaceuticals 24(5), 551-563 (2009). doi:10.1089/cbr.2009.0647
    27. Tavares, A.A.S., Tavares, J.M.R.S.: Evaluating T99mc Auger electrons for targeted tumor radiotherapy by computational methods. Medical Physics 37(7), 3551-3559 (2010). doi:doi:http://dx.doi.org/10.1118/1.3451117
    28. Ftá_niková, S., Böhm, R.: Monte Carlo Calculations of Energy Deposition in DNA for Auger Emitters. Radiation Protection Dosimetry 92(4), 269-278 (2000).
    29. Humm, J.L., Charlton, D.E.: A new calculational method to assess the therapeutic potential of auger electron emission. International Journal of Radiation Oncology*Biology*Physics 17(2), 351-360 (1989). doi:http://dx.doi.org/10.1016/0360-3016(89)90450-1
    30. Balagurumoorthy, P., Xu, X., Wang, K., Adelstein, S.J., Kassis, A.I.: Effect of distance between decaying 125I and DNA on Auger-electron induced double-strand break yield. International Journal of Radiation Biology 88(12), 998-1008 (2012). doi:doi:10.3109/09553002.2012.706360
    31. Balagurumoorthy, P., Chen, K., Adelstein, S.J., Kassis, A.I.: Auger Electron-Induced Double-Strand Breaks Depend on DNA Topology. Radiation Research 170(1), 70-82 (2008). doi:10.1667/rr1072.1
    32. Kandaiya, S., Lobachevsky, P.N., D'cunha, G., Martin, R.F.: Dna Strand Breakage by 125I-Decay in A Synthetic Oligodeoxynucleotide: Fragment distribution and evaluation of DMSO protection effect. Acta Oncologica 35(7), 803-808 (1996). doi:doi:10.3109/02841869609104030
    33. Jin, Y., Cowan, J.A.: DNA Cleavage by Copper−ATCUN Complexes. Factors Influencing Cleavage Mechanism and Linearization of dsDNA. Journal of the American Chemical Society 127(23), 8408-8415 (2005). doi:10.1021/ja0503985
    34. Cowan, R., Collis, C.M., Grigg, G.W.: Breakage of double-stranded DNA due to single-stranded nicking. Journal of Theoretical Biology 127(2), 229-245 (1987). doi:http://dx.doi.org/10.1016/S0022-5193(87)80133-9
    35. Trieb, M., Rauch, C., Wibowo, F.R., Wellenzohn, B., Liedl, K.R.: Cooperative effects on the formation of intercalation sites. Nucleic Acids Research 32(15), 4696-4703 (2004). doi:10.1093/nar/gkh788
    36. Balagurumoorthy, P., Chen, K., Bash, R.C., Adelstein, S.J., Kassis, A.I.: Mechanisms Underlying Production of Double-Strand Breaks in Plasmid DNA after Decay of 125I-Hoechst. Radiation Research 166(2), 333-344 (2006). doi:10.1667/rr3591.1
    37. Chen, Y.J., Groves, B., Muscat, R.A., Seelig, G.: DNA nanotechnology from the test tube to the cell. Nature nanotechnology 10(9), 748-760 (2015). doi:10.1038/nnano.2015.195
    38. Walsh, A.S., Yin, H., Erben, C.M., Wood, M.J., Turberfield, A.J.: DNA cage delivery to mammalian cells. ACS nano 5(7), 5427-5432 (2011). doi:10.1021/nn2005574
    39. Keefe, A.D., Pai, S., Ellington, A.: Aptamers as therapeutics. Nature reviews. Drug discovery 9(7), 537-550 (2010). doi:10.1038/nrd3141
    40. Tan, W., Wang, H., Chen, Y., Zhang, X., Zhu, H., Yang, C., Yang, R., Liu, C.: Molecular aptamers for drug delivery. Trends in biotechnology 29(12), 634-640 (2011). doi:10.1016/j.tibtech.2011.06.009
    41. Green, M.R., Sambrook, J.: Isolation and Quantification of DNA. In: Inglis, J., Boyle, A., Gann, A. (eds.) Molecular cloning: a laboratory manual. pp. 1-78. Cold Spring Harbor, New York (2012)
    42. Gaidamakova, E.K., Neumann, R.D., Panyutin, I.G.: Site-specific strand breaks in RNA produced by (125)I radiodecay. Nucleic Acids Res. 30(22), 4960-4965 (2002).
    43. Panyutin, I.G., Neumann, R.D.: Radioprobing of DNA: distribution of DNA breaks produced by decay of 125I incorporated into a triplex-forming oligonucleotide correlates with geometry of the triplex. Nucleic Acids Res. 25(4), 883-887 (1997).
    44. Michelotti, N., Johnson-Buck, A., Manzo, A.J., Walter, N.G.: Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 4(2), 139-152 (2012). doi:10.1002/wnan.170
    45. Tsukanov, R., Tomov, T.E., Liber, M., Berger, Y., Nir, E.: Developing DNA nanotechnology using single-molecule fluorescence. Accounts of chemical research 47(6), 1789-1798 (2014). doi:10.1021/ar500027d
    46. Grecz, N., El-Zawahry, Y.A.: Effect of radiation and freezing on [3H]DNA of Yersinia enterocolitica. Appl. Environ. Microbiol. 47(5), 1101-1105 (1984).
    47. Bazoni, R.F., Lima, C.H., Ramos, E.B., Rocha, M.S.: Force-dependent persistence length of DNA-intercalator complexes measured in single molecule stretching experiments. Soft matter 11(21), 4306-4314 (2015). doi:10.1039/c5sm00706b
    48. Almaqwashi, A.A., Andersson, J., Lincoln, P., Rouzina, I., Westerlund, F., Williams, M.C.: Dissecting the Dynamic Pathways of Stereoselective DNA Threading Intercalation. Biophys. J. 110(6), 1255-1263 (2016). doi:10.1016/j.bpj.2016.02.016
    49. Almaqwashi, A.A., Paramanathan, T., Lincoln, P., Rouzina, I., Westerlund, F., Williams, M.C.: Strong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex. Nucleic Acids Res. 42(18), 11634-11641 (2014). doi:10.1093/nar/gku859
    50. Almaqwashi, A.A., Paramanathan, T., Rouzina, I., Williams, M.C.: Mechanisms of small molecule-DNA interactions probed by single-molecule force spectroscopy. Nucleic acids research 44(9), 3971-3988 (2016). doi:10.1093/nar/gkw237
    51. Paramanathan, T., Vladescu, I., McCauley, M.J., Rouzina, I., Williams, M.C.: Force spectroscopy reveals the DNA structural dynamics that govern the slow binding of Actinomycin D. Nucleic Acids Res. 40(11), 4925-4932 (2012). doi:10.1093/nar/gks069
    52. Graham, J.S., Johnson, R.C., Marko, J.F.: Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res. 39(6), 2249-2259 (2011). doi:10.1093/nar/gkq1140
    53. van Loenhout, M.T., De Vlaminck, I., Flebus, B., den Blanken, J.F., Zweifel, L.P., Hooning, K.M., Kerssemakers, J.W., Dekker, C.: Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers. PloS one 8(6), e65329 (2013). doi:10.1371/journal.pone.0065329
    54. Liebesny, P., Goyal, S., Dunlap, D., Family, F., Finzi, L.: Determination of the number of proteins bound non-specifically to DNA. Journal of physics. Condensed matter : an Institute of Physics journal 22(41), 414104 (2010). doi:10.1088/0953-8984/22/41/414104
    55. Murugesapillai, D., McCauley, M.J., Maher, L.J., 3rd, Williams, M.C.: Single-molecule studies of high-mobility group B architectural DNA bending proteins. Biophysical reviews 9(1), 17-40 (2017). doi:10.1007/s12551-016-0236-4
    56. Kulczyk, A.W., Tanner, N.A., Loparo, J.J., Richardson, C.C., van Oijen, A.M.: Direct observation of enzymes replicating DNA using a single-molecule DNA stretching assay. Journal of visualized experiments : JoVE(37) (2010). doi:10.3791/1689
    57. Hamdan, S.M., Loparo, J.J., Takahashi, M., Richardson, C.C., van Oijen, A.M.: Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 457(7227), 336-339 (2009). doi:10.1038/nature07512
    58. Danilowicz, C., Limouse, C., Hatch, K., Conover, A., Coljee, V.W., Kleckner, N., Prentiss, M.: The structure of DNA overstretched from the 5'5' ends differs from the structure of DNA overstretched from the 3'3' ends. Proc. Natl. Acad. Sci. U. S. A. 106(32), 13196-13201 (2009). doi:10.1073/pnas.0904729106
    59. Zhang, X., Chen, H., Fu, H., Doyle, P.S., Yan, J.: Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements. Proc. Natl. Acad. Sci. U. S. A. 109(21), 8103-8108 (2012). doi:10.1073/pnas.1109824109
    60. Lee, G., Muramoto, G.G., Chute, J.P., Marszalek, P.E.: Nanomechanical fingerprints of gamma radiation damage to DNA. Journal of nanoscience and nanotechnology 9(12), 7359-7363 (2009).
    61. Manning, G.S.: Electrostatic free energy of the DNA double helix in counterion condensation theory. Biophys. Chem. 101-102, 461-473 (2002).
    62. Rouzina, I., Bloomfield, V.A.: Force-induced melting of the DNA double helix. 2. Effect of solution conditions. Biophys. J. 80(2), 894-900 (2001). doi:10.1016/s0006-3495(01)76068-7
    63. King, G.A., Gross, P., Bockelmann, U., Modesti, M., Wuite, G.J., Peterman, E.J.: Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America 110(10), 3859-3864 (2013). doi:10.1073/pnas.1213676110
    64. Bosaeus, N., El-Sagheer, A.H., Brown, T., Akerman, B., Norden, B.: Force-induced melting of DNA--evidence for peeling and internal melting from force spectra on short synthetic duplex sequences. Nucleic acids research 42(12), 8083-8091 (2014). doi:10.1093/nar/gku441
    65. Xu, S., Yuan, H., Xu, A., Wang, J., Wu, L.: Rapid synthesis of stable and functional conjugates of DNA/gold nanoparticles mediated by Tween 80. Langmuir : the ACS journal of surfaces and colloids 27(22), 13629-13634 (2011). doi:10.1021/la203632c
    66. Daniel, M.C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews 104(1), 293-346 (2004). doi:10.1021/cr030698+
    67. Krpetic, Z., Singh, I., Su, W., Guerrini, L., Faulds, K., Burley, G.A., Graham, D.: Directed assembly of DNA-functionalized gold nanoparticles using pyrrole-imidazole polyamides. Journal of the American Chemical Society 134(20), 8356-8359 (2012). doi:10.1021/ja3014924
    68. Metzler, R., Ambjornsson, T., Hanke, A., Fogedby, H.C.: Single DNA denaturation and bubble dynamics. Journal of physics. Condensed matter : an Institute of Physics journal 21(3), 034111 (2009). doi:10.1088/0953-8984/21/3/034111
    69. Singh, A.R., Giri, D., Kumar, S.: Force induced melting of the constrained DNA. The Journal of chemical physics 132(23), 235105 (2010). doi:10.1063/1.3427587
    70. Yang, T.-S., Cui, Y., Wu, C.-M., Lo, J.-M., Chiang, C.-S., Shu, W.-Y., Chung, W.-J., Yu, C.-S., Chiang, K.-N., Hsu, I.C.: Determining the Zero-Force Binding Energetics of an Intercalated DNA Complex by a Single-Molecule Approach. ChemPhysChem 10, 2791-2794 (2009).
    71. Dudko, O.K., Hummer, G., Szabo, A.: Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96(10), 108101 (2006). doi:10.1103/PhysRevLett.96.108101
    72. Dudko, O.K., Hummer, G., Szabo, A.: Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc. Natl. Acad. Sci. U. S. A. 105(41), 15755-15760 (2008). doi:10.1073/pnas.0806085105
    73. Ambjornsson, T., Banik, S.K., Krichevsky, O., Metzler, R.: Breathing dynamics in heteropolymer DNA. Biophys. J. 92(8), 2674-2684 (2007). doi:10.1529/biophysj.106.095935
    74. Wenner, J.R., Williams, M.C., Rouzina, I., Bloomfield, V.A.: Salt dependence of the elasticity and overstretching transition of single DNA molecules. Biophysical journal 82(6), 3160-3169 (2002). doi:10.1016/s0006-3495(02)75658-0
    75. Murade, C.U., Subramaniam, V., Otto, C., Bennink, M.L.: Force spectroscopy and fluorescence microscopy of dsDNA-YOYO-1 complexes: implications for the structure of dsDNA in the overstretching region. Nucleic acids research 38(10), 3423-3431 (2010). doi:10.1093/nar/gkq034
    76. Ota, T., Sugiura, T., Kawata, S.: Rupture force measurement of biotin-streptavidin bonds using optical trapping. Applied Physics Letters 87(4), 043901 (2005). doi:10.1063/1.1999855

    QR CODE