簡易檢索 / 詳目顯示

研究生: 辛政霖
Zheng-Lin Hsin
論文名稱: 整合晶片適應性頻寬迴路濾波器之快速切換鎖相迴路頻率合成器
A Fast-Switching PLL Frequency Synthesizer with an On-Chip Adaptive-Bandwidth Loop Filter
指導教授: 柏振球
Jenn-Chyou Bor
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 91
中文關鍵詞: 鎖相迴路頻率合成器迴路濾波器適應性頻寬快速切換
外文關鍵詞: PLL, Frequency Synthesizer, Loop Filter, Adaptive-Bandwidth, Fast-Switching
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文提出一個可以快速切換之適應性迴路頻寬鎖相迴路頻率合成器,其中包含一個整合於晶片中之適應性頻寬迴路濾波器,一個電壓控制震盪器,其中包含一個數位式可調電容陣列,一個可程式除頻器,一個相位頻率偵測器,一個可調式電荷汞,以及數位抖動偵測電路和迴路頻寬決定電路。主要設計目標希望能完成一個快速的頻率切換而且具有高度整合之頻率合成器。在此論文之中,所使用之迴路濾波器採用新的疊加電流鏡之架構,此架構能夠有效的降低電容值的需求,進而降低電容在晶片中佔用之面積。而為了迴路穩定性之考量,電荷汞電流可依照迴路頻寬設定來做調整,以維持迴路整體之穩定性。而抖動偵測電路與迴路頻寬決定電路用來適應性的切換迴路頻寬,進而達成快速鎖定且降低雜訊之操作需求。可程式除頻器則是由多模數除頻器來組成並實現,其中包含了六個除二除三電路,可除數為六十四至一百二十七,而在此鎖相迴路中,除數設定為一百二十。在此高度整合之頻率合成器使用的是台灣積體電路公司零點一八微米金氧半互補式電晶體製程來做實現。量測到的震盪頻率可在十六點九五六億赫茲到十七點七一億赫茲之間。 鎖定時間約為八十四微秒,總共晶片面積為1.188 x 0.998平方厘米,總共量測之電流消耗為二十四點四厘安培。


    This thesis proposes the design of a fast-switching frequency synthesizer, which includes an on-chip adaptive-bandwidth loop filter, a VCO with digital varactor array, programmable frequency divider, phase-frequency detector, tunable charge pump, jitter measurement circuit and loop bandwidth decision circuit. The main target is to achieve fast-locking frequency change and highly integration. The on-chip loop filter adopts a cascode current mirror architecture, which effectively shrinks the needs of capacitance, and in advance reduces the occupied area. For the stability of the phase-locked loop, the charge pump current is adjusted according to the loop bandwidth setting. The jitter measurement and loop decision circuit are used for switching the loop bandwidth, and thus achieve a fast-locking behavior. The frequency divider is realized by a multi-modulus prescaler with division number 64 to 127. The fully integrated frequency synthesizer is implemented in TSMC 0.18 μm CMOS process. The measured frequency tuning range is from 1.6956 GHz to 1.710 GHz. The locking time is around 84 μs. The total chip area is 1.188 x 0.998 and the power consumption is 24.4mA.

    Chapter 1 Introduction 1.1 Background 1.2 Motivation 1.3 Thesis Organization Chapter 2 System Overview of an Adaptive-Bandwidth PLL Frequency Synthesizer 2.1 Introduction 2.2 Phase-Locked Loop Fundamentals 2.2.1 Linear Model Analysis 2.2.2 PLL Building Blocks 2.2.3 Fast-Switching Techniques 2.3 Adaptive-Bandwidth PLL Frequency Synthesizer 2.3.1 Adaptive-Bandwidth PLL Architecture 2.3.2 Bandwidth Adaptation Scheme 2.3.3 Behavior Model Simulation 2.4 Summary Chapter 3 PLL Building Block Design 3.1 Adaptive-Bandwidth Loop Filter Design 3.1.1 Basic Loop Filter Topologies 3.1.2 On-Chip Loop Filter Circuit 3.1.3 Bandwidth Adjustment 3.2 Digital Adaptive-Bandwidth Controller Design 3.2.1 Jitter Measurement Circuit 3.2.2 Loop Bandwidth Decision Circuit 3.3 Other Building Block Design 3.3.1 Voltage-Controlled Oscillator 3.3.2 Programmable Frequency Divider 3.3.3 Phase-Frequency Detector and Charge Pump 3.4 Summary Chapter 4 Synthesizer Simulation and Measurement Results 4.1 Synthesizer Integration Simulation 4.2 Synthesizer Chip Measurement 4.2.1 Preparations for Measurement 4.2.2 Measurement Results 4.3 Summary Chapter 5 Conclusion and Future Work 5.1 Conclusion 5.2 Future Work

    References:

    [1] J.J. Real, “A 915 MHz CMOS Frequency Synthesizer,” Master’s thesis, Electrical Engineering Department of the University of California, Los Angeles, 1995.

    [2] “A Design of a Compact 2GHz-PLL with a New Adaptive Loop Filter Circuit”, Masaomi Toyama, Shiro Dosho, Naoshi Yanagisawa, 2003 Symposium on VLSI Circuits Digest of Technical Papers.

    [3] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillator,” IEEE J. Solid-State Circuits, vol. 34, no. 5, May 1999.

    [4] K. O. Kenneth, N. Park, and D. J. Yang, “1/f Noise of nMOS and pMOS
    Transistors and their Implications to Design of Voltage Controlled Oscillators,” in IEEE Radio Frequency Integrated Circuit Symp. Dig, pp. 59–62, June, 2002.

    [5] N. H. W. Fong, J. O. Plouchart, N. Zamdmer, D. Liu, L. F. Wagner, C. Plett, and N. G. Tarr, “Design of Wide-Band CMOS VCO for Multiband Wireless LAN Applications,” IEEE J. Solid-State Circuits, vol. 38, no. 8, August 2003.

    [6] H. Sjoland, “Improved Switched Tuning of Differential CMOS VCOs,” IEEE Transactions on Circuits and Systems, Analog and Digital Signal Processing, vol. 49, no. 5, May 2002.

    [7] A. Fard, T. Johnson, and D. Aberg, “Design of a Dual-Band 5/2.4 GHz CMOS VCO for 802.11a/b/g WLAN Transceivers,” IEEE Asia-Pacific Conference on Circuits and Systems, Dec. 2004.

    [8] C. Vaucher and D. Kasperkovitz, “A Wide-Band Tuning System for Fully Integrated Satellite Receivers,” IEEE J. Solid-State Circuits, vol. 33, pp. 987-997, July 1998.

    [9] M. W. Shen, “Fractional Frequency Divider Design and Its Synthesizer Application,” Master’s thesis, National Tsing Hua University, 2005.

    [10] A. H. Ismail and M. I. Elmasry, “A Lower Power Design Approach for MOS Current Mode Logic,” in Proc. IEEE System-on-Chip Conf. (SOC ’03), pp. 143-146, Sept. 2003.

    [11] A. Wafa and A. Ahmed, “High-Speed RF Multi-Modulus Prescaler Architecture for Fractional-N PLL Frequency Synthesizers,” in Proc. IEEE Int. Symp. On Circuits and Systems (ISCAS ’04), vol. 4, pp. 241-244, May 2004.

    [12]C. S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegli, and Z. Wang, “A Family of Low-Power Truly Modular Programmable Dividers in Standard 0.35 CMOS Technology,” IEEE J. Solid-State Circuits, vol. 35, pp. 1039-1045, July 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE