研究生: |
陳約任 Chen, Yueh-Jen |
---|---|
論文名稱: |
漸擴流場梯度分選高效能精子汲取並應用於人工試管嬰兒 HYDRAULIC EXTRACTION OF HIGH QUALITY SPERMS FROM A DUAL GRADIENT SPERM SORTER FOR IN-VITRO FERTILIZATION |
指導教授: |
曾繁根
Tseng, Fan-Gang |
口試委員: |
潘力誠
Pan, Li-Chern 蘇育全 Su, Yu-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 精子分離 、試管嬰兒 |
外文關鍵詞: | sperm sorting,, IVF |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生醫微流體晶片應用於生殖系統方面已經越來越普及。以往用以分選的機制大致可以分為:1.化學梯度吸引 2.熱吸引 3.穩定層流分選 4.逆向流場分選。但這些分選方法中,除了穩定層流外,都會對精子本身活動力有一定的削減。而穩定層流的方法又無法有效地分別出精子的活動力。因此,本研究提出了一個漸擴流場的機制,隨著流道的逐漸增擴,流速將相對的減慢。在流場中的精子感受到流場會對其做抵抗。同時隨著流場的減弱而依照本身運動能力停留在不同區塊,得到分選的效果。在分選漸擴區域,開設一個側枝,準備將分選後的精子取出。由於側枝在分選時做了氣密處理,與入口並無壓力差,因此精子在經過時並不會有流場將之帶入,而是僅依靠擴散的方式進入。側枝流道可以成功的取出高效精子同時不影響分選。分選結束後,將側枝的氣密解除,使用滴管將高效精子取出。如此一來,操作簡易,移除了多數實驗所需要的幫浦,在臨床上也是一大優勢。經過分選的精子,數量約2000至15000隻,存活率達到77%,證實晶片確實可將死亡精子沖洗掉,篩檢出存活精子。活動力方面,Motile sperm由38%提升至70%,Progressive Sperm則是由11%提升至33%,可見經過精片作用,高效能精子成功被取出。最後將分選後的精子與本實驗室的研究” 建構三維結構之微流體裝置應用於鼠卵細胞培養與透明帶去除”所剝殼的老鼠卵子做結合後,與使用傳統方式剝殼並配上未分選精子後做比較,受孕潛力較傳統方式的40%提升到60%。另外,本晶片使用的是PMMA壓克力。配合熱壓模的製程方法,可以以便宜又快速的方式量產。流道入口、出口端接有文字做標示,協助使用者操作,避免人為疏失造成晶片失效。經過封裝後,可將PMMA塑膠晶片做成一可以快速量產的商業產品,應用於人工試管嬰兒。
This paper proposes a selection and extraction strategy to acquire high quality sperms from a biomimetic microfluidic device capable of generating a dual gradient flow field for motile sperm sorting. The sorter consists of a straight flow zone, a rapidly expansion sector for sperm sorting by gradient up-stream flow, and a dumbbell channel for dead sperms separation at the outlet. A collateral runner is set at the front area of the expansion sector without affecting the sorting process because the chamber is blocked while sorting. At the end of sorting, the collateral chamber is open and then using just pipette to derive high quality sperms instead of pump. Controllable numbers, ranging from 2000 to 10000, of sperms can be collected with a motility (>70μm) ratio higher than 70%, suitable for in-vitro fertilization (IVF). Hot embossing lithography process is presented. Microchannels are replicated on a Polymethylmetacrylate (PMMA) stamp with thickness of 1 mm. With low cost and high replication precision, we can make it a clinical chip.
1. 胡一君、游智勝、林明瑜、胡恆蒼、陳順源,“微型生醫晶片發展與應用”,儀科中心簡訊 69 期,台灣,中華民國94年。
2. T. Ichiki, T. Hara, T. Ujiie, Y. Horiike, and K. Yasuda, “Development of bio-MEMS devices for single cell expression analysis,”in Microprocesses and Nanotechnology Conference, 2001 International, 2001, pp. 190-191.
3. K. Ikuta, S. Maruo, Y. Fukaya, and T. Fujisawa, “Biochemical IC chip toward cell free DNA protein synthesis,”in Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on, 1998, pp. 131-136.
4. Z. Zhan, C. Dafu, Y. Zhongyao, and W. Li, “Biochip for PCR amplification in silicon,” in Microtechnologies in Medicine and Biology, 1st Annual International, Conference on. 2000, 2000, pp. 25-28.
5. 謝明里,“男人你也有一半的責任,男性不孕症及治療”,長庚醫訊,29卷,97年8月,p248
6. Steptoe PC, Edwards RG, “Birth after the reimplantation of a human embryo.”Lancent, 1978, 2:236
7. Palermo G, Joris H, Devroey P, Van Steirteghem AC,“Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. ”Lancet, 1992; 340: 17-18
8. Arie Berkovitz, Fina Eltes, Adrian Ellenbogen, Sigal Peer, Dov Feldberg, Benjamin Bartoov,“Does the presence of nuclear vacuoles in human sperm selected for ICSI affect pregnancy outcome?”Human Reproduction, 2006, Vol. 21, No7 pp. 1787-1790
9. D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology.”Annu Rev Biomed Eng, vol. 4, 2002, pp. 261-286.
10. Ronald Suh, Shuichi Takayama, and Gary D. Smith, “Microfluidic Applications for Andrology.”Journal of andrology, vol. 26, 2005, pp. 664-679.
11. J. Li, S. Zhu, X. He, R. Sun, Q. He, Y. Gan, S. Liu, H. Funahashi, Y. Li, “Application of a microfluidic sperm sorter to in vitro production of dairy cattle sex-sorted embryos” Theriogenology, 2016, pp.1211-8.
12. 陳惠文, “粒線體膜電位之測定” NTU BioMed Bulletin, 2000
13. C. Y. Chen, T.C. Chiang, C.M. Lin, S.S. Lin, D.S. Jong, V.F. Tsai, J.T. Hsieh, A.M. Wo,” Sperm quality assessment via separation and sedimentation in a microfluidic device” Analyst, 2013, pp.4967
14. B. Cho, T. Schuster, X. Zhu, D. Chang, G. D. Smith, S. Takayama, “A microfluidic device for separating motile sperm from nonmotile sperm via inter-streamline crossings.”2nd Annual International IEEE-EMBS Special Topic conference on Microtechnologies in Medicine & Biology, 2002, pp156-159.
15. Brenda S. Cho, Timothy G. Schuster, Xiaoyue Zhu, David Chang, Gary D. Smith, and Shuichi Takayama, “Passively driven integrated microfluidic system for separation of motile sperm.”Anal. Chem.,2003, 75, 1671-1675.
16. P. C. Chen, Y. N. Lin, , R. G. Wu, L. C. Pan, F. G. Tseng, “HIGH-THROUGHPUT SPERM SORTING BY SPERM Flowing Upstream IN A DUAL GRADIENT FLOW FIELD” 17th International Conference on Miniaturized, 2013.
17. A. Shamsi, A. Amiri, P. Heydari, H. Hajghasem, M. Mohtashamifar, M. Esfandiari,” Low cost method for hot embossing of microstructures on PMMA by SU‑8 masters” Microsyst Technol, 2014, pp. 1925-1931.
18. Z. Yin, L. Sun, E. Cheng, H. Zou,” Numerical study on the de‑molding behavior of 2D PMMA nanochannles during hot embossing process” Microsyst Technol, 2016, pp.129-135.
19. Marcos, N. P. Tran, A. R. Saini, K. C. H. Ong, W. J. Chia,” Analysis of a swimming sperm in a shear flow” Microfluid Nanofluid , 2014, pp.809-819.
20. Z. Yin, L. Sun, H. Zou, E. Cheng.” Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods” Nanotechnology, 2015.
21. S. M. Knowlton, M. Sadasivam, S. Tasoglu,” Microfluidics for sperm research” Trends in Biotechnology, 2015.
22. Y. N. Lin, P. C. Chen, , R. G. Wu, L. C. Pan, F. G. Tseng,” HIGH-THROUGHPUT SPERM SORTING BY SPERM Flowing Upstream IN A DUAL GRADIENT FLOW FIELD” 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2013.
23. Duck Bong Seo, Yuksel Agea, Z. C. Feng, John K. Crister, “Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure.”Microfluidic Nanofluidic, 2007, vol. 3, pp. 561-570.
24. Yu An Chen, Zi Wei Huang, Fang Sheng Tsai, Chang Yu Chen, Cheng Ming Lin, Andrew M. Wo, “Analysis of sperm concentration and motility in a microfluidic device.”Microfluidic Nanofluidic , 2010, vol. 10, no.1, pp. 59-67.
25. T. Qiu, C. Han, R. Ma, L. Xie, Z. Li, K. Su, L. Wang, G. Huang, J. Wang, J. Qiao, W. Xing, J. Cheng, “A microfluidic treadmill for sperm selective trapping according to motility classification.”Transducer, 2011, pp. 1320-1323.
26. L. Sliwa, “Chemotaction of mouse spermatozoa induced by certain hormones,”Arch Androl, 1995, vol. 35, pp. 105-110.
27. M. Despont, H. Lorentz, N. Fahrni, J. Brugger, P. Renaud, and P. Vettiger, “High-Aspect-Ratio, Ultrathick, Negative Near-UV Photoresist for MEMS Applications,”Proc. MEMS’9, IEEE, Nagoya, Japan, 1997, pp. 518-521.
28. L. B. Shettles, “Nuclear morphology of human spermatozoa,”Nature, 1960, vol 186, Issue 4725, pp. 648-649.
29. M. Yamamot, T. Hioki, T. Ishii, S. Nakajima-Iijima, and S. Uchino, “DAP kinase activity is critical for C2-ceramide-induced apoptosis in PC12 cells,”European Journal of Biochemisty, January 2002, Vol. 269, Issue 1, pp. 139-147
30. In vitro fertilization, Wikipedia, the free encyclopedia
31. Flow CytoMetry (FCM), Wikipedia, the free encyclopedia
32. Computer-assisted sperm analysis (CASA), Wikipedia, the free encyclopedia