簡易檢索 / 詳目顯示

研究生: 施國昇
Shih, Kuo-sheng
論文名稱: 共軛高分子MEH-PPV單分子層表面接枝以及其發光行為之研究
Synthesis of Single Layer MEH-PPV and the Photoluminescence Behavior
指導教授: 楊長謀
Yang, C.-M. Arnold
口試委員: 王素蘭
Wang, Sue Lein
林宏洲
Lin, Hung Chou
黃華宗
Huang, Hua Tsung,
黃國柱
Huang, Kuo Chu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: MEH-PPVgraft-tograft-from螢光
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了了解共軛高分子MEH-PPV本身的發光性質,我們藉由合成的方式在處理過的矽晶片上接枝單分子層的MEH-PPV作為研究其發光行為的平台。矽晶片表面先以3-aminopropyl-trimethoxysilane後,我們再使用兩種不同的方法: Graft-from以及Graft-to進行接枝。而接枝上的MEH-PPV高分子的表面形貌隨著兩種不同接枝方法有著極大差異,此差異的主要原因是由於利用兩種不同接枝方法所造成的接枝MEH-PPV間距離的差異。藉由UV-Vis吸收光譜與AFM之Bearing ratio計算出接枝距離的變化: 由Graft-from方法中,最密集的0.54 nm,到Graft-to中隨反應時間不同產生34~7.3 nm間的距離差異。在Graft-from的結果中,由於接枝點間距離非常近,使得接枝的高分子(Rg ~ 4.13 nm)無法容納在此小體積中因此產生輕微的排擠效應,造成高分子鏈會傾向往垂直基材的方向生長,形成分子刷。另一方面,在Graft-to中的接枝高分子並未受到側向壓縮,因此在溶液中形成膨潤的鏈型而在空氣中因崩塌而攤平在基材上。而對於接枝MEH-PPV之螢光行為,在graft-from實驗中,接枝的 MEH-PPV發光峰可以藉由控制反應使其由434 nm逐漸轉變到 550 nm。對於graft-to實驗,用來反應之MEH-PPV溶液發光峰對於16k 為470 nm而55k為550 nm ,但接枝後MEH-PPV的發光峰在乾燥環境下量測,16k的MEH-PPV在415~430 nm而55k的MEH-PPV結果在434~460 nm。然而,當graft-to樣品在溶劑環境中量測PL時,16k的接枝MEH-PPV在470nm而55k的結果為550nm,並且此現象是可重複出現的。而在55k的MEH-PPV結果中其藍位移較16k的MEH-PPV顯著。此巨大藍位移的現象主要是因為接枝高分子鏈在崩塌時,產生了高度的交纏現象並在高分子回縮的過程中與基材間產生拉扯,因此相對於在溶劑中高分子是不受拉扯的情形下具有較短的共軛長度。此拉扯主要是來自當溶劑揮發後導致MEH-PPV高分子鏈處在非平衡態之鏈型且被基材所限制住。藉由比較不同接枝密度的螢光光譜結果,拉扯效應在MEH-PPV接枝較少時其效果越顯著,這是由於接枝MEH-PPV與基材的接觸面積變小。而螢光光譜之結果也顯示接枝較少時的MEH-PPV螢光強度較密集接枝的結果大了3倍。


    Abstract I 摘要 III 目錄 VI 圖目錄 IX 第一章 簡介 1 第二章 文獻回顧 3 2-1蝕刻 3 2-2矽烷自組裝層 4 2-2-1 矽烷自組層之材料與製備方法 4 2-2-2 矽烷自組裝層之結構與成長機制 5 2-3 高分子刷(Polymer Brush) 6 2-3-1 物理吸附法 7 2-3-2 Graft-to接枝法 8 2-3-3 Graft-from接枝法 9 2-4 MEH-PPV 9 第三章 實驗方法 11 3-1 實驗藥品 11 3-2 實驗步驟 12 3-2-1  APTMS自組裝層之製備 12 3-2-2 合成MEH-PPV高分子 13 3-2-2.1 MEH-PPV 單體之合成 13 3-2-2.2 MEH-PPV之合成 14 3-2-3 MEH-PPV接枝於基材 15 3-2-3.1 “graft-to” 接枝法 15 3-2-3.2 “graft-from”接枝法 16 3-3 實驗儀器介紹 17 3-3-1 原子力顯微鏡 (Atomic Force Microscopy) 17 3-3-2 UV-Visible 吸收光譜儀 19 3-3-3 Photoluminescence 螢光光譜儀 20 3-3-4 Confocal 共軛焦螢光光譜 21 3-3-5 Gel Permeation Chromatography凝膠滲透層析儀 22 3-3-6 Fourier Transform Infrared Spectroscopy 45 23 第四章 結果與討論 24 4-1 矽晶圓前處理 24 4-2 APTMS自組裝層 26 4-3 Graft-from 接枝法 33 4-3-1 MEH-PPV 單體接枝 33 4-3-2 MEH-PPV高分子之合成 38 4-4 Graft-to 接枝法 52 4-4-1 MEH-PPV 高分子之合成 52 4-4-2 55k MEH-PPV 之Graft-to 接枝 54 4-4-4 16k MEH-PPV 接枝與其螢光行為 76 4-5 拉伸與交纏現象對MEH-PPV螢光行為之影響 82 4-5-3 55k MEH-PPV螢光行為於不同接枝密度下之探討 87 第五章 結論 92 參考文獻 94

    1. Y. Yang and A. J. Heeger, Applied Physics Letters, vol. 64, 1245-1247, 1994
    2. F. C. Krebs ∗, H. Spanggard, T. Kjær, M. Biancardo, J. Alstrup, Materials Science and Engineering B, 138 , 106–111, 2007
    3. 陳炳志,清華材料系碩士論文,表面除潤摩擦型變引起之共軛高分子巨大之光電增益, 2010
    4. T.-Q. Nguyen,I. B. Martini,J. Liu,and B. J. Schwartz* , J. Phys. Chem. B, 104, 237-255 , 2000
    5. 張景學,吳昌崙,半導體製造技術,2003.
    6. http://en.wikipedia.org/wiki/Dry_etching
    7. K. R. Williams, Student Member, IEEE, and R. S. Muller Life Fellow, IEEE, Journal of Microelectromechanical Systems, vol. 5, No. 4, 1996
    8. K. R. Williams, Senior Member, IEEE, K. Gupta, Student Member, IEEE, and M. Wasilik, Journal of Microelectromechanical Systems, vol. 12, No. 6, 2003
    9. A. V. Krasnoslobodtsev and S. N. Smirnov*, Langmuir, 18, 3181-3184, 2002
    10. F. Zhang and M. P. Srinivasan*, Langmuir, 20, 2309-2314, 2004
    11. E. P. Plueddemann, Silane Coupling Agents; Plenum: New York, 1991.
    12. P. F. Van Der Voort, and E. F. Vansant, J. Liq. Chrom. & Rel. Technol. , 19, 2718-2752, 1996
    13. P. Trens, R. Denoyel," and J. Rouquerol, Langmuir ,11, 551-554, 1995
    14. C.-H. Chiang, N.-I Liu, and J. L. Koenig, Journal of Colloidal and Interface Science, vol. 86, No. 1, 1982
    15. S.T. Milner, Science, vol. 251, 1991
    16. W.-C. Wu, Y. Tian, C.-Y. Chen, C.-S. Lee, Y.-J. Sheng, W.-C. Chen ,and A. K.-Y. Jen*, Langmuir, 23, 2805-2814, 2007
    17. S. J. O’shea, M.E. Welland , and T. Rayment, Langmuir, 9, 1826-1835, 1993
    18. E. Parsonage, M. Tirrell, H. Watanabe, R. Nuzzo, Macromolecules, 20, 1361, 1987
    19. H. Morschamann, M. Stamm, C. Toprakcioglu, Macromolecules, 24, 3681, 1991
    20. I. Luzinov, D. Julthongpiput, H. Malz, J. Pionteck, and V. V. Tsukruk*, Macromolecules, 33, 1043-1048, 2000
    21. V. Koutsos, E. W. van der Vegte, E. Pelletier, A. Stamouli, and G. Hadziioannou*, Macromolecules, 30, 4719-4726, 1997
    22. D. F. Siqueira, K. Kohler, and M. Stamm, Langmuir, 11, 3092-3096, 1995
    23. O. Prucker, and J. Ruhe, Macromolecules, 31, 592-601, 1998
    24. M. Husseman, E. E. Malmstro1, M. McNamara, M. Mate, D.Mecerreyes, D. G. Benoit, J. L. Hedrick, P. Mansky, E. Huang, T. P. Russell, and C. J. Hawker, Macromolecules, 32, 1424-1431, 1999
    25. R. A. Sedjo, B. K. Mirous, and W. J. Brittain, Macromolecules, 33, 1492-1493, 2000
    26. B. Zhao and W. J. Brittain, J. Am. Chem. Soc., 121, 3557-3558, 1999
    27. M. Biesalski and J. Ruhe, Macromolecules, 32, 2309-2316 , 1999
    28. E. Uchida, and Y. Ikada, Macromolecules, 30, 5464-5469, 1997
    29. W. H. Yu, E. T. Kang, and K. G. Neoh, J. Phys. Chem. B, 107, 10198-10205, 2003.
    30. A. Sidorenko, S. Minko, K. Schenk-Meuser, H. Duschener, and M. Stamm, Lanmuir, 15, 8349-8355, 1999
    31. P. Paoprasert, J. W. Spalenka, D. L. Peterson, R. E. Ruther, R. J. Hamers, P. G. Evans, and P. Gopalan, Journal of Materials Chemistry, 20, 2651–2658, 2010.
    32. S. K. Sontag, N. Marshall, and J. Locklin, Chem. Commun., 3354–3356, 2009
    33. N. Khanduyeva, V. Senkovskyy, T. Beryozkina, M. Horecha, M. Stamm, C. Uhrich, M. Riede, K. Leo, and A. Kiriy*, J. Am. Chem. Soc., 131, 153-161, 131, 2009
    34. M. Beinhoff, A. T. Appapillai, L. D. Underwood, J. E. Frommer, and K. R. Carter*, Langmuir, 22, 2411-2414, 2006
    35. J. H. Moon and T. M. Swager, Macromolecules, 35, 6086-6089 , 2002
    36. G. Padmanaban and S. Ramakrishnan*, J. Am. Chem. Soc., 122, 2244-2251, 2000
    37. C. J. Collison,* L. J. Rothberg, V. Treemaneekarn, and Y. Li , Macromolecules, 34, 2346-2352, 2001
    38. R. F. Cossiello, E. Kowalski, P. C. Rodrigues, L. Akcelrud, A. C. Bloise, E. R. deAzevedo, T. J. Bonagamba, and T. D. Z. Atvars*, Macromolecules, 38, 925-932, 2005
    39. P. F. barbara,* A. J. Gesquiere, S.-J. Park, and Y. J. Lee, Acc. Chem. Res., 38, 602-610, 2005
    40. 黃麟智,清華材料系碩士論文,光捕捉高分子穿透式奈米碳管網路系統, 2008
    41. http://www.npl.co.uk/nanoscience/surface-nanoanalysis/research/introduction-to-afm-and-afm-modes
    42. http://www.appnano.com/products/applications/tapping-non-contact-mode
    43. http://www.matsceng.ohio-state.edu/~myers/OCL.htm
    44. http://www.uni-due.de/biofilm-centre/mikro_service_en.shtml
    45. http://www.51xuewen.com/group/1951/topic_19034.htm
    46. John McMurry, Organic Chemistry, Six Edition, Thomson
    47. http://en.wikipedia.org/wiki/File:FTIR_Interferometer.png
    48. D. Graf, N. Grundner, and R. Schulz, J. Vac. Sci. Technol. A, 7, 1989
    49. T. Takahagi, A. Ishitani, and H. Kuroda, J. Appl. Phys., 69, 15, 1991
    50. L. T. Zhuravlev, Langmuir, 3, 316-318, 1987
    51. P. A. Heiney, K. Gruneberg, and J. Fang, Langmuir, vol. 16, 2000
    52. J. J. Pesek, I. E. Leigh, Chemically modified surfaces , 1993
    53. H. Okabayashi , I. Shimizu , E. Nishio, Colloid Polym. Sci. , 275, 744-753, 1997
    54. H.L. Chou , K.F. Lin , Y.L. Fan, and D.C. Wang, Proceeding of the 8th Polymers for Advanced Technologies International Symposium, 13-16, 2005
    55. http://cool.conservation-us.org/byauth/burke/solpar/solpar2.html
    55. S.-H. Yang, C. C. Wu, C. F. Lee, and M. H. Liu, Displays, 29, 214–218, 2008
    56. H. Becker, H. Spreitzer,* W. Kreuder, E. Kluge, H. Schenk, I. Parker, and Y. Cao, Adv. Mater. , 12, No. 1, 2000
    57. H. Becker, H. Spreitzer, K. Ibrom, and W. Kreuder, Macromolecules , 32, 4925-4932, 1999
    58. M. Atreya, S. Li, E.T. Kang, Polymer Degradation and Stability, 65, 287-286, 1999

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE