研究生: |
林郁書 Lin, Yu-Shu |
---|---|
論文名稱: |
奈米片狀四氧化三錫應用於鋰離子電池陽極 Sn3O4 Nanosheets as Anode for Lithium Ion Batteries |
指導教授: |
李紫原
Lee, Chi-Young |
口試委員: |
徐文光
裘性天 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 四氧化三錫 、碳錫複合材料 、鋰離子電池 、陽極 |
外文關鍵詞: | Sn3O4, Sn/C composite, lithium ion batteries, anode |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用簡單水熱法,以二氯化錫為前驅物,PVP為界面活性劑,一併加入氫氧化鈉溶液中進行反應,並藉由調控溶劑中水與酒精的比例以及水熱反應時間,以合成純相奈米片狀四氧化三錫。另外也將不同參數合成出之產物進行分析,來推測並驗證各種錫氧化物之合成路徑。
此外,本研究將探討四氧化三錫及其碳複合材料應用於鋰離子電池陽極之電容值表現。將合成出之四氧化三錫材料去除殘留的高分子後,作為鋰離子電池陽極,在0.1C充放電速率下經過20循環得到129 mAhg-1之電容值。為了增進電池表現,進一步將合成時所加入之高分子(PVP)作為碳來源並藉由高溫裂解在片狀四氧化三錫材料上包覆碳層,並將此複合材料作為陽極與前者進行比較,在0.1C充放電20循環後可以擁有278 mAhg-1之電容值,明顯優於前者純相四氧化三錫作為電極時之充放電表現,可藉由此了解到碳包覆之複合材料能夠進一步改善四氧化三錫材料導電度以及形貌維持,進而提升鋰離子電池充放電之循環表現。
In this study, tin oxide nanostructures were synthesized by hydrothermal approach using SnCl2, PVP (Polyvinylpyrrolidone) and NaOH in deionized water / ethanol mixed solution under different time and temperature. By tuning different volume ratio of H2O/ethanol and reaction time, pure phase Sn3O4 nanosheets were obtained. Furthermore, the reaction pathway could be verified by analyzing individual oxide synthesized with variant factors.
In addition, the anode of lithium ion battery made by PVP-removed Sn3O4 nanosheets was examined at 0.1C. The reversible discharge capacity is 129 mAhg-1 after 20 charge-discharge cycles. In order to increase the conductivity and resist volume expansion, the as-synthesized Sn3O4 nanosheets were coated carbon by heating it in argon atmosphere to form Sn3O4/C composite via PVP pyrolysis process. The lithium ion battery anodes made by the composite have an improved discharge capacity, 278 mAhg-1, after 20 discharge-charge cycles at 0.1C. As mentioned above, carbon coating process can be accomplished by polymer pyrolysis under certain temperature. The self-carbonized Sn3O4 keeping the nanosheets morphology increases the conductivity during charge-discharge progress and leads to great charge-discharge cycle performance.
1. Lawson, F. Nature 1967, 215, 955-956.
2. Berengue, O. M.; Simon, R. A.; Chiquito, A. J.; Dalmaschio, C. J.; Leite, E. R.; Guerreiro, H. A.; Guimarães, F. E. G. J. Appl. Phys. 2010, 107, (3), 033717.
3. White, T. A.; Moreno, M. S.; Midgley, P. A. Z. Kristallogr 2010, 225, (2-3).
4. Xu, Y.; Liu, Q.; Zhu, Y.; Liu, Y.; Langrock, A.; Zachariah, M. R.; Wang, C. Nano Lett. 2013, 13, (2), 470-4.
5. Gauzzi, F.; Verdini, B.; Maddalena, A.; Principi, G. Inorg. Chim. Acta 1985, 104, (1), 1-7.
6. Chen, J. S.; Ng, M. F.; Wu, H. B.; Zhang, L.; Lou, X. W. CrystEngComm 2012, 14, (16), 5133.
7. Wang, J.; Du, N.; Zhang, H.; Yu, J.; Yang, D. J.Phys.Chem.C 2011, 115, (22), 11302-11305.
8. Wang, C.; Du, G.; Ståhl, K.; Huang, H.; Zhong, Y.; Jiang, J. Z. J.Phys.Chem.C 2012, 116, (6), 4000-4011.
9. He, Y.; Li, D.; Chen, J.; Shao, Y.; Xian, J.; Zheng, X.; Wang, P. RSC Adv. 2014, 4, (3), 1266.
10. Pan, X. Q.; Fu, L. J. Appl. Phys. 2001, 89, (11), 6048.
11. Sangaletti, L.; Depero, L. E.; Allieri, B.; Pioselli, F.; Comini, E.; Sberveglieri, G.; Zocchi, M. J. Mater. Res. 1998, 13, (09), 2457-2460.
12. Moreno, M.; Mercader, R.; Bibiloni, A. J. Phys.: Condens. Matter 1992, 4, (2), 351.
13. Moreno, M. S.; Punte, G.; Rigotti, G.; Mercader, R. C.; Weisz, A. D.; Blesa, M. A. Solid State Ionics 2001, 144, (1), 81-86.
14. Jose Damaschio, C.; Berengue, O. M.; Stroppa, D. G.; Simon, R. A.; Ramirez, A. J.; Herwig Schreiner, W.; Chiquito, A. J.; Leite, E. R. J. Cryst. Growth 2010, 312, (20), 2881-2886.
15. Seko, A.; Togo, A.; Oba, F.; Tanaka, I. Phys. Rev. Lett. 2008, 100, (4).
16. 吳典熹. 國立台灣大學化學工程研究所博士論文 2000.
17. Wu, H. B.; Chen, J. S.; Lou, X. W.; Hng, H. H. J. Phys. Chem. C 2011, 115, (50), 24605-24610.
18. Tan, L.; Wang, L.; Wang, Y. J. Nanomater. 2011, 2011, 1-10.
19. 蕭光哲. 工業材料256期 2008, 157-166
20. Inaba, M.; Ogumi, Z. Electr. Insul. Mag. IEEE 2001, 17, (6), 6-20.
21. 費定國、黃楷斌. 工業材料274期 2009, 163-167.
22. Padhi, A. K.; Nanjundaswamy, K.; Goodenough, J. B. d. J. Electrochem. Soc.1997, 144, (4), 1188-1194.
23. 楊模樺. 工業材料237期 2006, 135-144.
24. Osaka, T.; Momma, T.; Matsumoto, Y.; Uchida, Y. J. Electrochem. Soc.1997, 144, (5), 1709-1713.
25. 劉茂煌. 工業材料157期 2000, 133-139.
26. Tarascon, J.-M.; Armand, M. Nature 2001, 414, (6861), 359-367.
27. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, (9), 3243.
28. Liu, J.; Li, Y.; Huang, X.; Ding, R.; Hu, Y.; Jiang, J.; Liao, L. J. Mater. Chem. 2009, 19, (13), 1859.
29. Zhang, W.-J. J. Power Sources 2011, 196, (1), 13-24.
30. 周更生、劉軒良、高立行、蘇侯名、方政煜、楊棋銘. 台灣化學工
程學會59 週年年會論文 2012.
31. Glass, R. Lipids 1971, 6, (12), 919-925.
32. Borodko, Y.; Habas, S. E.; Koebel, M.; Yang, P.; Frei, H.; Somorjai, G. A. J. Phy. Chem. B 2006, 110, (46), 23052-23059.
33. Journal of Radioanalytical and Nuclear Chemistry LettersWang, H.; Wang, Y.; Xu, J.; Yang, H.; Lee, C. S.; Rogach, A. L. Langmuir 2012, 28, (28), 10597-601.
34. Wang, F.; Zhou, X.; Zhou, J.; Sham, T.-K.; Ding, Z. J.Phys.Chem.C 2007, 111, (51), 18839-18843.
35. Liu, B.; Cao, M.; Zhao, X.; Tian, Y.; Hu, C. J. Power Sources 2013, 243, 54-59.
36. Tian, Q.; Zhang, Z.; Chen, J.; Yang, L.; Hirano, S.-i. J. Power Sources 2014, 246, 587-595.
37. Lou, X. W.; Chen, J. S.; Chen, P.; Archer, L. A. Chem. Mater. 2009, 21, (13), 2868-2874.
38. Han, S.; Jang, B.; Kim, T.; Oh, S. M.; Hyeon, T. Adv. Funct. Mater. 2005, 15, (11), 1845-1850.
39. Kim, J. G.; Nam, S. H.; Lee, S. H.; Choi, S. M.; Kim, W. B. ACS Appl. Mater. Interfaces 2011, 3, (3), 828-35.