簡易檢索 / 詳目顯示

研究生: 趙崇豪
Chao, Chung-Hao
論文名稱: 斑馬魚胚胎six3基因表現調控機制之探討: 內中胚層基因調控網路six3b的角色暨six3a表現在前腦及眼之調控
Explore the regulatory mechanisms of six3 genes in zebrafish embryos : The role of six3b in mesendoderm gene regulatory networks and the regulation of six3a during forebrain and eye development
指導教授: 汪宏達
Wang, Horng-Dar
喻秋華
Yuh, Chiou-Hwa
口試委員: 藍忠昱
胡清華
黃聲蘋
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 143
中文關鍵詞: 斑馬魚內中胚層基因網路調控眼睛前腦
外文關鍵詞: zebrafish, mesendoderm, gene regulatory networks, eye, forebrain
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Six3基因屬於Six/Sine oculis基因家族中的一員。有六種Six家族的基因在不同的物種中被發現,其中Six3和Six6對於脊椎動物的前腦和眼睛發育相當重要。本論文旨在利用模式生物斑馬魚,研究six3b基因參與的基因調控網路,以及研究six3a基因表現的調控機制。首先,我先介紹Six基因家族以及過去對於Six3在生物發育上的研究,也提及Six3基因異常造成的人類疾病。其次我研究基因調控網路特別著重於six3b。利用嗎啉基反義寡核苷酸抑制斑馬魚Six3b的表現,並以及時定量聚合酶鏈反應尋找會受Six3b影響的下游基因。我發現在百分之五十外包期,six3b會增加otx1之表現,並降低mybbp1a之表現。在百分之七十五外包期,six3b會提高mybbp1a、foxh1、otx2之表現,並減少etv5之表現。在體分節期six3b調控許多神經外胚層的轉錄因子,這些轉錄因子已知和腦部不同區域的特化有關。我也發現了gbx1、gbx2、otx2會減少six3a以及six3b的表現,形成回饋循環。接下來我進一步研究six3a表現的調控機制。six3a上游兩個演化保守區域A和D對six3a具有重要的調控作用:在早期D增強six3a大量表現,晚期A促進six3a表現於視網膜以及前腦最前端、D誘導six3a表現在整個眼睛、腦和軀幹、A可抑制six3a在軀幹的表現。由缺失突變及A和D的點位突變,我找到了數個可能的轉錄因子結合位置可能與其作用有關,也用電泳遷移實驗證實胚胎之核萃取物含有可結合其上之蛋白質。接下來我進一步尋找誘導six3a在早期表現的增強子D上之結合蛋白。藉由增強子D內的高度保留序列當做探針,我們發現在斑馬魚six3b的上游存在與six3a增強子D序列相似,並功能類似的序列。比對兩者序列後我發現其中含有一個高度保留的同源箱(homebox)蛋白結合位置TAATTA,此發現意味著這段序列可能扮演重要的角色。我藉由試管內和活體內的實驗方法測試三種同源箱蛋白Boz, Gsc,以及Otx2結合上此位的可能性。實驗結果發現Otx2可能結合上此位置,並誘導斑馬魚six3的起始表現。


    Table of Contents I List of Figures and Tables IV 中文摘要 VI Abstract VII Chapter 1 Introduction 1.1 Overall introduction 1 1.2 Mesoderm Gene Regulatory Networks 1 1.3 Complexity of cis-regulatory organization of six3a 5 1.4 Transcription factors for six3 early expression 7 1.5 The Six gene family 10 1.6 Function of Six3 for embryonic development 11 1.7 Human diseases related to SIX3 mutation 11 1.8 The role of Six3 in gene regulatory network 16 Chapter 2 Materials and Methods 2.1 Zebrafish husbandry, experimentation and care/welfare 20 2.2 Morpholino injections 20 2.3 RNA extraction and real time RT-PCR 20 2.4 Establish gene regulatory network using BioTapestry 22 2.5 DNA constructs and site-directed mutagenesis 22 2.6 Microinjection and microscopic photography 23 2.7 Electrophoresis mobility shift assay (EMSA) 23 2.8 Cell culture and transfection 25 2.9 Protein extraction and Western blot 25 2.10 Chromatin immunoprecipitation 26 Chapter 3 The gene regulatory subcircuit center by six3b 3.1 Results 27 3.1.1 Gene expression profile of six3a and six3b in zebrafish development 28 3.1.2 Phenotypic defects of six3a and six3b morphants 29 3.1.3 The six3b downstream genes at early stages 29 3.1.4 The six3b downstream targets at later stage on neuroectoderm 29 3.1.5 Upstream inputs of six3b and six3a 30 3.1.6 Construction of six3b subcircuits 31 3.2 Discussion 3.2.1 The role of six3 in mesoderm 32 3.2.2 The role of six3 for neuroectoderm 32 Chapter 4 Transcription regulation of six3a in zebrafish 4.1 Results 39 4.1.1 Identification of the cis-regulatory modules for six3a expression 39 4.1.2 Brn3 and Pax6.1 binding sites on modules B and C contain no enhancer function in the forebrain or eyes up to 24 hpf 40 4.1.3 Identification of modules D and A, together with the basal promoter, as early enhancers 42 4.1.4 Deletion analysis of module A identified several activator binding sites 43 4.1.5 Deletion analysis in module D elucidated multiple activator binding elements 46 4.1.6 Silencer function of module A for the suppression of the ectopic expression of module D 48 4.1.7 EMSA for modules D and A 48 4.2 Discussion 4.2.1 Two evolutionarily conserved modules and many minimal functional elements work together to achieve correct six3a expression 51 4.2.2 POU domain transcription factor is important for activating six3a expression 53 4.2.3 Pax6a binds to six3a module A to activate expression in the eye and brain 53 4.2.4 Other possible transcription factors regulating six3a expression 54 Chapter 5 The transcription factor responsible for early expression of module D 5.1 Results 94 5.1.1 Both zebrafish six3a and six3b have D module while module A is not found in six3b 94 5.1.2 The D module also plays an enhancer role to regulate both six3a and six3b express from early stage 95 5.1.3 The last 28 bp in module D plays a role in regulating six3a expression at 6 hpf 96 5.1.4 Two zebrafish homeobox genes gsc and boz did not function at six3a D module by in vitro assays 97 5.1.5 Otx2 functions at six3a D module may through the homeobox protein binding site in the last 28 bp of six3a module D 99 5.2 Discussion 5.2.1 The finding of D module in zebrafish and other vertebrates 101 5.2.2 Boz and Gsc may regulate six3 through other cis-elements or through indirect mechanism 102 5.2.3 The role of six3 activation by Otx2 103 5.2.4 Other methods to know the transcription regulation of six3 104 Conclusion and perspective 118 References 121 Appendixes Appendix 1. Sequence of morpholinos 133 Appendix 2. The sequences of the Q-PCR primers of the candidate genes 134 Appendix 3. The sequences of the primers for the candidate genes used for in situ hybridization 135 Appendix 4. Expression profiles of 35 transcription factor 136 Appendix 5. Downstream target genes of sox17, sox32, foxa2, gata6, gata5, otx2, six3b, gbx2, and gbx1 137 Appendix 6. Upstream inputs for foxa2, gata6, gata5, otx2, six3a, six3b, sox32, sox17, gbx2, and gbx1 139 Appendix 7. The gene regulatory networks control the developmental process at five different stages 141 Publications 143 Oral presentations, posters and workshops 144

    Acampora, D., Gulisano, M. and Simeone, A. (1999). Otx genes and the genetic control of brain morphogenesis. Molecular and Cellular Neuroscience 13, 1-7.
    Alexander, J. and Stainier, D. Y. (1999). A molecular pathway leading to endoderm formation in zebrafish. Curr Biol 9, 1147-57.
    Allaman-Pillet, N., Djemai, A., Bonny, C. and Schorderet, D. F. (1998). Methylation status of CpG sites and methyl-CpG binding proteins are involved in the promoter regulation of the mouse Xist gene. Gene Expression 7, 61-73.
    Ando, H., Kobayashi, M., Tsubokawa, T., Uyemura, K., Furuta, T. and Okamoto, H. (2005a). Lhx2 mediates the activity of Six3 in zebrafish forebrain growth. Dev Biol 287, 456-68.
    Ando, H., Kobayashi, M., Tsubokawa, T., Uyemura, K., Furuta, T. and Okamoto, H. (2005b). Lhx2 mediates the activity of Six3 in zebrafish forebrain growth. Developmental Biology 287, 456-468.
    Andreazzoli, M., Gestri, G., Carl, M., Appolloni, I., Wilson, S. W. and Barsacchi, G. (2005). Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting BMP4 expression. Developmental Biology 283, 426.
    Aoki, T. O., David, N. B., Minchiotti, G., Saint-Etienne, L., Dickmeis, T., Persico, G. M., Strahle, U., Mourrain, P. and Rosa, F. M. (2002). Molecular integration of casanova in the Nodal signalling pathway controlling endoderm formation. Development 129, 275-86.
    Appolloni, I., Calzolari, F., Corte, G., Perris, R. and Malatesta, P. (2008). Six3 controls the neural progenitor status in the murine CNS. Cerebral Cortex 18, 553-562.
    Attisano, L., Silvestri, C., Izzi, L. and Labbe, E. (2001). The transcriptional role of Smads and FAST (FoxH1) in TGFbeta and activin signalling. Mol Cell Endocrinol 180, 3-11.
    Bane, T. K., LeBlanc, J. F., Lee, T. D. and Riggs, A. D. (2002). DNA affinity capture and protein profiling by SELDI-TOF mass spectrometry: effect of DNA methylation. Nucleic Acids Research 30.
    Ben-Tabou de-Leon, S. and Davidson, E. H. (2007). Gene regulation: gene control network in development. Annu Rev Biophys Biomol Struct 36, 191.
    Bendavid, C., Dubourg, C., Gicquel, I., Pasquier, L., Saugier-Veber, P., Durou, M. R., Jaillard, S., Frebourg, T., Haddad, B. R., Henry, C. et al. (2006a). Molecular evaluation of foetuses with holoprosencephaly shows high incidence of microdeletions in the HPE genes. Human Genetics 119, 1-8.
    Bendavid, C., Haddad, B. R., Griffin, A., Huizing, M., Dubourg, C., Gicquel, I., Cavalli, L. R., Pasquier, L., Shanske, A. L., Long, R. et al. (2006b). Multicolour FISH and quantitative PCR can detect submicroscopic deletions in holoprosencephaly patients with a normal karyotype. Journal of Medical Genetics 43, 496-500.
    Bergsland, M., Werme, M., Malewicz, M., Perlmann, T. and Muhr, J. (2006). The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes & Development 20, 3475-3486.
    Bernier, G., Panitz, F., Zhou, X., Hollemann, T., Gruss, P. and Pieler, T. (2000). Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos. Mech Dev 93, 59-69.
    Blum, M., Gaunt, S. J., Cho, K. W. Y., Steinbeisser, H., Blumberg, B., Bittner, D. and Derobertis, E. M. (1992). GASTRULATION IN THE MOUSE - THE ROLE OF THE HOMEOBOX GENE GOOSECOID. Cell 69, 1097-1106.
    Blumberg, B., Wright, C. V. E., Derobertis, E. M. and Cho, K. W. Y. (1991). ORGANIZER-SPECIFIC HOMEOBOX GENES IN XENOPUS-LAEVIS EMBRYOS. Science 253, 194-196.
    Boucher, C. A., King, S. K., Carey, N., Krahe, R., Winchester, C. L., Rahman, S., Creavin, T., Meghji, P., Bailey, M. E. S., Chartier, F. L. et al. (1995). A NOVEL HOMEODOMAIN-ENCODING GENE IS ASSOCIATED WITH A LARGE CPG ISLAND INTERRUPTED BY THE MYOTONIC-DYSTROPHY UNSTABLE (CTG)(N) REPEAT. Human Molecular Genetics 4, 1919-1925.
    Bovolenta, P., Mallamaci, A., Puelles, L. and Boncinelli, E. (1998a). Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors. Mech Dev 70, 201-3.
    Bovolenta, P., Mallamaci, A., Puelles, L. and Boncinelli, E. (1998b). Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors. Mechanisms of Development 70, 201-203.
    Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. and Kimelman, D. (1997). A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes & Development 11, 2359-2370.
    Calzone, F. J., Theze, N., Thiebaud, P., Hill, R. L., Britten, R. J. and Davidson, E. H. (1988). DEVELOPMENTAL APPEARANCE OF FACTORS THAT BIND SPECIFICALLY TO CIS-REGULATORY SEQUENCES OF A GENE EXPRESSED IN THE SEA-URCHIN EMBRYO. Genes & Development 2, 1074-1088.
    Cha, Y. I., Solnica-Krezel, L. and DuBois, R. N. (2006). Fishing for prostanoids: deciphering the developmental functions of cyclooxygenase-derived prostaglandins. Dev Biol 289, 263-72.
    Chan, T. M., Chao, C. H., Wang, H. D., Yu, Y. J. and Yuh, C. H. (2009a). Functional analysis of the evolutionarily conserved cis-regulatory elements on the sox17 gene in zebrafish. Dev Biol 326, 456-70.
    Chan, T. M., Longabaugh, W., Bolouri, H., Chen, H. L., Tseng, W. F., Chao, C. H., Jang, T. H., Lin, Y. I., Hung, S. C., Wang, H. D. et al. (2009b). Developmental gene regulatory networks in the zebrafish embryo. Biochim Biophys Acta 1789, 279-98.
    Cheyette, B. N. R., Green, P. J., Martin, K., Garren, H., Hartenstein, V. and Zipursky, S. L. (1994). THE DROSOPHILA SINE OCULIS LOCUS ENCODES A HOMEODOMAIN-CONTAINING PROTEIN REQUIRED FOR THE DEVELOPMENT OF THE ENTIRE VISUAL-SYSTEM. Neuron 12, 977-996.
    Cohen, M. M. (2003a). Molecular dimensions of gastrointestinal tumors: Some thoughts for digestion. American Journal of Medical Genetics Part A 122A, 303-314.
    Cohen, M. M., Jr. (2003b). Molecular dimensions of gastrointestinal tumors: some thoughts for digestion. Am J Med Genet A 122, 303-14.
    Conte, I. and Bovolenta, P. (2007a). Comprehensive characterization of the cis-regulatory code responsible for the spatio-temporal expression of olSix3.2 in the developing medaka forebrain. Genome Biology 8.
    Conte, I. and Bovolenta, P. (2007b). Comprehensive characterization of the cis-regulatory code responsible for the spatio-temporal expression of olSix3.2 in the developing medaka forebrain. Genome Biol 8, R137.
    David, N. B. and Rosa, F. M. (2001). Cell autonomous commitment to an endodermal fate and behaviour by activation of Nodal signalling. Development 128, 3937-47.
    Davidson, E. H. and Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science 311, 796-800.
    Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C. H., Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C. et al. (2002). A genomic regulatory network for development. Science 295, 1669-78.
    Davis, R. J., Shen, W., Heanue, T. A. and Mardon, G. (1999). Mouse Dach, a homologue of Drosophila dachshund, is expressed in the developing retina, brain and limbs. Dev Genes Evol 209, 526-36.
    De Robertis, E. M. (2009). Spemann's organizer and the self-regulation of embryonic fields. Mechanisms of Development 126, 925-941.
    Del Bene, F., Tessmar-Raible, K. and Wittbrodt, J. (2004). Direct interaction of geminin and Six3 in eye development. Nature 427, 745-749.
    Dickmeis, T., Mourrain, P., Saint-Etienne, L., Fischer, N., Aanstad, P., Clark, M., Strahle, U. and Rosa, F. (2001). A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev 15, 1487-92.
    Domene, S., Roessler, E., El-Jaick, K. B., Snir, M., Brown, J. L., Velez, J. I., Bale, S., Lacbawan, F., Muenke, M. and Feldman, B. (2008a). Mutations in the human SIX3 gene in holoprosencephaly are loss of function. Hum Mol Genet 17, 3919-28.
    Domene, S., Roessler, E., El-Jaick, K. B., Snir, M., Brown, J. L., Velez, J. I., Bale, S., Lacbawan, F., Muenke, M. and Feldman, B. (2008b). Mutations in the human SIX3 gene in holoprosencephaly are loss of function. Human Molecular Genetics 17, 3919-3928.
    Dubourg, C., Lazaro, L., Pasquier, L., Bendavid, C., Blayau, M., Le Duff, F., Durou, M. R., Odent, S. and David, V. (2004). Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: Mutation review and genotype-phenotype correlations. Human Mutation 24, 43-51.
    Fadool, J. M. and Dowling, J. E. (2008). Zebrafish: a model system for the study of eye genetics. Prog Retin Eye Res 27, 89-110.
    Fekany-Lee, K., Gonzalez, E., Miller-Bertoglio, V. and Solnica-Krezel, L. (2000). The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127, 2333-2345.
    Feldman, B., Gates, M. A., Egan, E. S., Dougan, S. T., Rennebeck, G., Sirotkin, H. I., Schier, A. F. and Talbot, W. S. (1998). Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181-5.
    Gehring, W. J. (2005). New perspectives on eye development and the evolution of eyes and photoreceptors. J Hered 96, 171-84.
    Hilton, E., Rex, M. and Old, R. (2003). VegT activation of the early zygotic gene Xnr5 requires lifting of Tcf-mediated repression in the Xenopus blastula. Mechanisms of Development 120, 1127-1138.
    Inbal, A., Kim, S. H., Shin, J. and Solnica-Krezel, L. (2007). Six3 represses nodal activity to establish early brain asymmetry in zebrafish. Neuron 55, 407-415.
    Jeong, Y., Leskow, F. C., El-Jaick, K., Roessler, E., Muenke, M., Yocum, A., Dubourg, C., Li, X., Geng, X., Oliver, G. et al. (2008). Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nature Genetics 40, 1348-1353.
    Jones, C. M., Kuehn, M. R., Hogan, B. L., Smith, J. C. and Wright, C. V. (1995). Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121, 3651-62.
    Joore, J., Fasciana, C., Speksnijder, J. E., Kruijer, W., Destree, O. H. J., vandenEijndenvanRaaij, A. J. M., deLaat, S. W. and Zivkovic, D. (1996). Regulation of the zebrafish goosecoid promoter by mesoderm inducing factors and Xwnt1. Mechanisms of Development 55, 3-18.
    Kari, G., Rodeck, U. and Dicker, A. P. (2007a). Zebrafish: An emerging model system for human disease and drug discovery. Clinical Pharmacology & Therapeutics 82, 70-80.
    Kari, G., Rodeck, U. and Dicker, A. P. (2007b). Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 82, 70-80.
    Kawahara, A., Wilm, T., Solnica-Krezel, L. and Dawid, I. B. (2000). Antagonistic role of vega1 and bozorok/dharma homeobox genes in organizer formation. Proceedings of the National Academy of Sciences of the United States of America 97, 12121-12126.
    Kawakami, K., Ohto, H., Ikeda, K. and Roeder, R. G. (1996a). Structure, function and expression of a murine homeobox protein AREC3, a homologue of Drosophila sine oculis gene product, and implication in development. Nucleic Acids Research 24, 303-310.
    Kawakami, K., Ohto, H., Takizawa, T. and Saito, T. (1996b). Identification and expression of six family genes in mouse retina. FEBS Lett 393, 259-63.
    Kawakami, K., Sato, S., Ozaki, H. and Ikeda, K. (2000). Six family genes - structure and function as transcription factors and their roles in development. Bioessays 22, 616-626.
    Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B. and Stainier, D. Y. (2001). casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 15, 1493-505.
    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F. (1995). STAGES OF EMBRYONIC-DEVELOPMENT OF THE ZEBRAFISH. Developmental Dynamics 203, 253-310.
    Kimura, C., Shen, M. M., Takeda, N., Aizawa, S. and Matsuo, I. (2001). Complementary functions of Otx2 and Cripto in initial patterning of mouse epiblast. Developmental Biology 235, 12-32.
    Kobayashi, M., Toyama, R., Takeda, H., Dawid, I. B. and Kawakami, K. (1998a). Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125, 2973-82.
    Kobayashi, M., Toyama, R., Takeda, H., Dawid, I. B. and Kawakami, K. (1998b). Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125, 2973-2982.
    Komura, J., Sheardown, S. A., Brockdorff, N., SingerSam, J. and Riggs, A. D. (1997). In vivo ultraviolet and dimethyl sulfate footprinting of the 5' region of the expressed and silent Xist alleles. Journal of Biological Chemistry 272, 10975-10980.
    Kunwar, P. S., Zimmerman, S., Bennett, J. T., Chen, Y., Whitman, M. and Schier, A. F. (2003). Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction. Development 130, 5589-99.
    Kuure, S., Chi, X., Lu, B. and Costantini, F. (2010). The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development 137, 1975-1979.
    Lacbawan, F., Solomon, B. D., Roessler, E., El-Jaick, K., Domene, S., Velez, J. I., Zhou, N., Hadley, D., Balog, J. Z., Long, R. et al. (2009). Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function. J Med Genet 46, 389-98.
    Lagutin, O. V., Zhu, C. Q. C., Kobayashi, D., Topczewski, J., Shimamura, K., Puelles, L., Russell, H. R. C., McKinnon, P. J., Solnica-Krezel, L. and Oliver, G. (2003). Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes & Development 17, 368-379.
    Lakowski, J., Majumder, A. and Lauderdale, J. D. (2007). Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. Developmental Biology 307, 498-520.
    Lamont, R. E. and Childs, S. (2006). MAPping out arteries and veins. Sci STKE 2006, pe39.
    Le Good, J. A., Joubin, K., Giraldez, A. J., Ben-Haim, N., Beck, S., Chen, Y., Schier, A. F. and Constam, D. B. (2005). Nodal stability determines signaling range. Curr Biol 15, 31-6.
    Lengler, J. and Graw, J. (2001). Regulation of the human SIX3 gene promoter. Biochemical and Biophysical Research Communications 287, 372-376.
    Leoncini, E., Baranello, G., Orioli, I. M., Anneren, G., Bakker, M., Bianchi, F., Bower, C., Canfield, M. A., Castilla, E. E., Cocchi, G. et al. (2008). Frequency of holoprosencephaly in the International Clearinghouse Birth Defects Surveillance systems: Searching for population variations. Birth Defects Research Part a-Clinical and Molecular Teratology 82, 585-591.
    Leonhardt, H. and Cardoso, M. C. (2000). DNA methylation, nuclear structure, gene expression and cancer. Journal of Cellular Biochemistry, 78-83.
    Levine, M. and Davidson, E. H. (2005). Gene regulatory networks for development. Proc Natl Acad Sci U S A 102, 4936-42.
    Lieschke, G. J. and Currie, P. D. (2007a). Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353-67.
    Lieschke, G. J. and Currie, P. D. (2007b). Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics 8, 353-367.
    Longabaugh, W. J. R., Davidson, E. H. and Bolouri, H. (2005). Computational representation of developmental genetic regulatory networks. Developmental Biology 283, 1-16.
    Loose, M. and Patient, R. (2004). A genetic regulatory network for Xenopus mesendoderm formation. Dev Biol 271, 467-78.
    Loosli, F., Koster, R. W., Carl, M., Krone, A. and Wittbrodt, J. (1998a). Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech Dev 74, 159-64.
    Loosli, F., Koster, R. W., Carl, M., Krone, A. and Wittbrodt, J. (1998b). Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mechanisms of Development 74, 159-164.
    Loosli, F., Winkler, S. and Wittbrodt, J. (1999). Six3 overexpression initiates the formation of ectopic retina. Genes Dev 13, 649-54.
    Makiyama, Y., Shoji, S. and Mizusawa, H. (1997). Hydrocephalus in the Otx2(+/-) mutant mouse. Experimental Neurology 148, 215-221.
    Mari-Beffa, M., Santamaria, J. A., Murciano, C., Santos-Ruiz, L., Andrades, J. A., Guerado, E. and Becerra, J. (2007). Zebrafish fins as a model system for skeletal human studies. ScientificWorldJournal 7, 1114-27.
    Matsuzaki, T., Amanuma, H. and Takeda, H. (1992). A POU-DOMAIN GENE OF ZEBRAFISH, ZFPOU1, SPECIFICALLY EXPRESSED IN THE DEVELOPING NEURAL TISSUES. Biochemical and Biophysical Research Communications 187, 1446-1453.
    McCollum, C. W., Amin, S. R., Pauerstein, P. and Lane, M. E. (2007a). A zebrafish LMO4 ortholog limits the size of the forebrain and eyes through negative regulation of six3b and rx3. Developmental Biology 309, 373-385.
    McCollum, C. W., Amin, S. R., Pauerstein, P. and Lane, M. E. (2007b). A zebrafish LMO4 ortholog limits the size of the forebrain and eyes through negative regulation of six3b and rx3. Dev Biol 309, 373-85.
    McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A. and Gehring, W. J. (1984). A CONSERVED DNA-SEQUENCE IN HOMOEOTIC GENES OF THE DROSOPHILA ANTENNAPEDIA AND BITHORAX COMPLEXES. Nature 308, 428-433.
    Moon, R. T. and Kimelman, D. (1998). From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Bioessays 20, 536-545.
    Muenke, M. and Beachy, P. A. (2000). Genetics of ventral forebrain development and holoprosencephaly. Current Opinion in Genetics & Development 10, 262-269.
    Nakada, C., Satoh, S., Tabata, Y., Arai, K. I. and Watanabe, S. (2006). Transcriptional repressor foxl1 regulates central nervous system development by suppressing shh expression in zebra fish. Molecular and Cellular Biology 26, 7246-7257.
    Nanni, L., Croen, L. A., Lammer, E. J. and Muenke, M. (2000). Holoprosencephaly: Molecular study of a California population. American Journal of Medical Genetics 90, 315-319.
    Niehrs, C. and Derobertis, E. M. (1991). ECTOPIC EXPRESSION OF A HOMEOBOX GENE CHANGES CELL FATE IN XENOPUS EMBRYOS IN A POSITION-SPECIFIC MANNER. Embo Journal 10, 3621-3629.
    Niehrs, C., Keller, R., Cho, K. W. Y. and Derobertis, E. M. (1993). THE HOMEOBOX GENE GOOSECOID CONTROLS CELL-MIGRATION IN XENOPUS EMBRYOS. Cell 72, 491-503.
    Ochi, H. and Westerfield, M. (2007). Signaling networks that regulate muscle development: lessons from zebrafish. Dev Growth Differ 49, 1-11.
    Olesnicky, E., Hernandez-Lagunas, L. and Artinger, K. B. (2010). prdm1a Regulates sox10 and islet1 in the Development of Neural Crest and Rohon-Beard Sensory Neurons. Genesis 48, 656-666.
    Oliver, G., Mailhos, A., Wehr, R., Copeland, N. G., Jenkins, N. A. and Gruss, P. (1995a). Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045-4055.
    Oliver, G., Mailhos, A., Wehr, R., Copeland, N. G., Jenkins, N. A. and Gruss, P. (1995b). Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045-55.
    Oliver, G., Wehr, R., Jenkins, N. A., Copeland, N. G., Cheyette, B. N. R., Hartenstein, V., Zipursky, S. L. and Gruss, P. (1995c). HOMEOBOX GENES AND CONNECTIVE-TISSUE PATTERNING. Development 121, 693-705.
    Oliveri, P. and Davidson, E. H. (2004). Gene regulatory network controlling embryonic specification in the sea urchin. Curr Opin Genet Dev 14, 351-60.
    Oliveri, P. and Davidson, E. H. (2007). Development. Built to run, not fail. Science 315, 1510-1.
    Pasquier, L., Dubourg, C., Gonzales, M., Lazaro, L., David, V., Odent, S. and Encha-Razavi, F. (2005). First occurrence of aprosencephaly/atelencephaly and holoprosencephaly in a family with a SIX3 gene mutation and phenotype/genotype correlation in our series of SIX3 mutations. Journal of Medical Genetics 42.
    Patarnello, T., Bargelloni, L., Boncinelli, E., Spada, F., Pannese, M. and Broccoli, V. (1997). Evolution of Emx genes and brain development in vertebrates. Proc Biol Sci 264, 1763-6.
    Perlin, J. R. and Talbot, W. S. (2007). Signals on the move: chemokine receptors and organogenesis in zebrafish. Sci STKE 2007, pe45.
    Pfeifer, G. P. and Riggs, A. D. (1991). CHROMATIN DIFFERENCES BETWEEN ACTIVE AND INACTIVE X-CHROMOSOMES REVEALED BY GENOMIC FOOTPRINTING OF PERMEABILIZED CELLS USING DNASE-I AND LIGATION-MEDIATED PCR. Genes & Development 5, 1102-1113.
    Poulain, M. and Lepage, T. (2002). Mezzo, a paired-like homeobox protein is an immediate target of Nodal signalling and regulates endoderm specification in zebrafish. Development 129, 4901-14.
    Pyati, U. J., Look, A. T. and Hammerschmidt, M. (2007). Zebrafish as a powerful vertebrate model system for in vivo studies of cell death. Semin Cancer Biol 17, 154-65.
    Rankin, S. A., Kormish, J., Kofron, M., Jegga, A. and Zorn, A. M. (2011). A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. Developmental Biology 351, 297-310.
    Ryu, S. L., Fujii, R., Yamanaka, Y., Shimizu, T., Yabe, T., Hirata, T., Hibi, M. and Hirano, T. (2001). Regulation of dharma/bozozok by the Wnt pathway. Developmental Biology 231, 397-409.
    Sakaguchi, T., Kuroiwa, A. and Takeda, H. (2001). A novel sox gene, 226D7, acts downstream of Nodal signaling to specify endoderm precursors in zebrafish. Mech Dev 107, 25-38.
    Schell, U., Wienberg, J., Kohler, A., BrayWard, P., Ward, D. E., Wilson, W. G., Allen, W. P., Lebel, R. R., Sawyer, J. R., Campbell, P. L. et al. (1996). Molecular characterization of breakpoints in patients with holoprosencephaly and definition of the HPE2 critical region 2p21. Human Molecular Genetics 5, 223-229.
    Schier, A. F. and Talbot, W. S. (2001). Nodal signaling and the zebrafish organizer. Int J Dev Biol 45, 289-97.
    Schier, A. F. and Talbot, W. S. (2005). Molecular genetics of axis formation in zebrafish. Annu Rev Genet 39, 561-613.
    Schoenebeck, J. J. and Yelon, D. (2007). Illuminating cardiac development: Advances in imaging add new dimensions to the utility of zebrafish genetics. Semin Cell Dev Biol 18, 27-35.
    Seiliez, I., Thisse, B. and Thisse, C. (2006). FoxA3 and goosecoid promote anterior neural fate through inhibition of Wnt8a activity before the onset of gastrulation. Developmental Biology 290, 152-163.
    Seo, H. C., Drivenes, Ellingsen, S. and Fjose, A. (1998a). Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia. Mech Dev 73, 45-57.
    Seo, H. C., Drivenes, O., Ellingsen, S. and Fjose, A. (1998b). Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia. Mechanisms of Development 73, 45-57.
    Shimizu, T., Yamanaka, Y., Ryu, S. L., Hashimoto, H., Yabe, T., Hirata, T., Bae, Y., Hibi, M. and Hirano, T. (2000). Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mechanisms of Development 91, 293-303.
    Shiota, K. and Matsunaga, E. (1977). HOLOPROSENCEPHALY IN HUMAN EMBRYOS - EPIDEMIOLOGIC-STUDY. Japanese Journal of Human Genetics 22, 229-229.
    Simeone, A. (1998). Otx1 and Otx2 in the development and evolution of the mammalian brain. Embo Journal 17, 6790-6798.
    Sirotkin, H. I., Dougan, S. T., Schier, A. F. and Talbot, W. S. (2000). Bozozok and squint act in parallel to specify dorsal mesoderm and anterior neuroectoderm in zebrafish. Development 127, 2583-2592.
    Solnica-Krezel, L. and Driever, W. (2001). The role of the homeodomain protein Bozozok in Zebrafish axis formation. International Journal of Developmental Biology 45, 299-310.
    Spaniol, P., Bornmann, C., Hauptmann, G. and Gerster, T. (1996). Class III POU genes of zebrafish are predominantly expressed in the central nervous system. Nucleic Acids Research 24, 4874-4881.
    Stathopoulos, A., Van Drenth, M., Erives, A., Markstein, M. and Levine, M. (2002). Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111, 687-701.
    Stern, H. M. and Zon, L. I. (2003a). Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3, 533-9.
    Stern, H. M. and Zon, L. I. (2003b). Opinion - Cancer genetics and drug discovery in the zebrafish. Nature Reviews Cancer 3, 533-539.
    Suda, Y., Nakabayashi, J., Matsuo, I. and Aizawa, S. (1999). Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development 126, 743-57.
    Suh, C. S., Ellingsen, S., Austbo, L., Zhao, X. F., Seo, H. C. and Fjose, A. (2010). Autoregulatory binding sites in the zebrafish six3a promoter region define a new recognition sequence for Six3 proteins. Febs Journal 277, 1761-1775.
    Summerton, J. (1999). Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochimica Et Biophysica Acta-Gene Structure and Expression 1489, 141-158.
    Tessmar, K., Loosli, F. and Wittbrodt, J. (2002a). A screen for co-factors of Six3. Mech Dev 117, 103-13.
    Tessmar, K., Loosli, F. and Wittbrodt, J. (2002b). A screen for co-factors of Six3. Mechanisms of Development 117, 103-113.
    Toy, J., Yang, J. M., Leppert, G. S. and Sundin, O. H. (1998). The Optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proceedings of the National Academy of Sciences of the United States of America 95, 10643-10648.
    Wallis, D. E., Roessler, E., Hehr, U., Nanni, L., Wiltshire, T., Richieri-Costa, A., Gillessen-Kaesbach, G., Zackai, E. H., Rommens, J. and Muenke, M. (1999a). Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nature Genetics 22, 196-198.
    Wallis, D. E., Roessler, E., Hehr, U., Nanni, L., Wiltshire, T., Richieri-Costa, A., Gillessen-Kaesbach, G., Zackai, E. H., Rommens, J. and Muenke, M. (1999b). Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet 22, 196-8.
    Wargelius, A., Seo, H. C., Austbo, L. and Fjose, A. (2003a). Retinal expression of zebrafish six3.1 and its regulation by Pax6. Biochem Biophys Res Commun 309, 475-81.
    Wargelius, A., Seo, H. C., Austbo, L. and Fjose, A. (2003b). Retinal expression of zebrafish six3.1 and its regulation by Pax6. Biochemical and Biophysical Research Communications 309, 475-481.
    Weasner, B. P. and Kumar, J. P. (2009). The non-conserved C-terminal segments of Sine Oculis Homeobox (SIX) proteins confer functional specificity. Genesis 47, 514-23.
    Williams, D. W., Muller, F., Lavender, F. L., Orban, L. and Maclean, N. (1996). High transgene activity in the yolk syncytial layer affects quantitative transient expression assays in zebrafish (Danio rerio) embryos. Transgenic Research 5, 433-442.
    Yamanaka, Y., Mizuno, T., Sasai, Y., Kishi, M., Takeda, H., Kim, C. H., Hibi, M. and Hirano, T. (1998). A novel homeobox gene, dharma, can induce the organizer in a non-cell-autonomous manner. Genes & Development 12, 2345-2353.
    Yu, D. G., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G. and Court, D. L. (2000). An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 97, 5978-5983.
    Yuh, C. H., Bolouri, H. and Davidson, E. H. (2001). Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development 128, 617-29.
    Yuh, C. H. and Davidson, E. H. (1996). Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo. Development 122, 1069-82.
    Zacchigna, S., De Almodovar, C. R. and Carmeliet, P. (2008a). Similarities between angiogenesis and neural development: What small animal models can tell us. Current Topics in Developmental Biology, Vol 80 80, 1-+.
    Zacchigna, S., Ruiz de Almodovar, C. and Carmeliet, P. (2008b). Similarities between angiogenesis and neural development: what small animal models can tell us. Curr Top Dev Biol 80, 1-55.
    Zhang, J. (2004). A new trick to tune down TGF-beta signal. Cell Res 14, 439-40.
    Zhang, Y. A., Okada, A., Lew, C. H. and McConnell, S. K. (2002). Regulated nuclear trafficking of the homeodomain protein Otx1 in cortical neurons. Molecular and Cellular Neuroscience 19, 430-446.
    Zhou, X., Hollemann, T., Pieler, T. and Gruss, P. (2000a). Cloning and expression of xSix3, the Xenopus homologue of murine Six3. Mech Dev 91, 327-30.
    Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. and Kuehn, M. R. (1993). Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361, 543-7.
    Zhou, X. L., Hollemann, T., Pieler, T. and Gruss, P. (2000b). Cloning and expression of xSix3, the Xenopus homologue of murine Six3. Mechanisms of Development 91, 327-330.
    Zhu, C. Q. C., Dyer, M. A., Uchikawa, M., Kondoh, H., Lagutin, O. V. and Oliver, G. (2002). Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development 129, 2835-2849.
    Zorn, A. M. and Wells, J. M. (2007a). Molecular basis of vertebrate endoderm development. Int Rev Cytol 259, 49-111.
    Zorn, A. M. and Wells, J. M. (2007b). Molecular basis of vertebrate endoderm development. International Review of Cytology - a Survey of Cell Biology, Vol 259 259, 49-+.
    Zou, S. M., Kamei, H., Modi, Z. and Duan, C. M. (2009). Zebrafish IGF Genes: Gene Duplication, Conservation and Divergence, and Novel Roles in Midline and Notochord Development. Plos One 4.
    Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G. and Harris, W. A. (2003a). Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155-67.
    Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G. and Harris, W. A. (2003b). Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155-5167.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE