簡易檢索 / 詳目顯示

研究生: 杜重未
Do, Trong Mui
論文名稱: 應用雷射剝蝕感應耦合電漿質譜儀偵測環境中水體及空氣懸浮微粒樣品
Laser ablation inductively coupled plasma mass spectrometry and its application in analysis of liquid and airborne particulate matter sample
指導教授: 王竹方
口試委員: 袁明程
李振弘
黃素珍
李明禹
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 100
中文關鍵詞: 雷射剝蝕感應耦合電漿質譜儀空氣懸浮微粒鹽水蜂炮地表水重金屬分析
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Laser ablation (LA) in analytical chemistry has grown rapidly over the past decade and is becoming a dominant technique for direct solid introduction into inductively coupled plasma mass spectrometry (ICP-MS) in analytical chemistry. The advantages of LA include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small sample and determination of spatial distribution of elemental composition.
    To exploit the possibilities of this technique in analysis of various types of environmental samples, in this study, we developed a dried-droplet method for laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS).The proposed method provides accurate and precise results when building calibration curves and determination of elements of interest in the liquid as well as airborne particulate matter samples. After placing just 1 L of a liquid standard solution onto the filter surface and then converting the solution into a very small, thin dry spot, the standard filter sample could be applied as an analytical subject for LA. To demonstrate the feasibility of this method, we used LA-ICP-MS to determine the levels of 13 elements ( Li, V, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl, and Pb) in five water samples and 16 elements (Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Cu, Zn, As, Sr, Ba and Pb) in airborne particulate matter samples. The correlation coefficients obtained from the various calibration curves ranged from 0.9920 (205Tl) to 0.9998 (52V), sufficient to allow the determination of a wide range of elements in the samples. Quantitative elemental analysis using this LA-ICP-MS technique can be performed within a period short time. In comparison with the established sample introduction by nebulization, the developed method can bring several benefits: no matrix interference, no need for sample pretreatment (time-saving), and reduction of possibilities of sample contamination.


    Table of Contents Publications relevant to the scope of thesis i Abstract ii Acknowledgement iii Table of contents iv List of Table vii List of Figure viii List of abbreviations ix Chapter I. Introduction 1 I.1 General overview 1 I.2 Aims of study 3 I.3 The expected results that are needed to achieve in this study 3 Chapter. II Literature review 5 II.1. Metals in environment and their health effects 5 II.2. LA-ICP-MS systems 8 II.2.1 Interferences in ICP-MS 10 II.2.2 Elemental fractionation 11 II.2.3 Matrix modifier 12 II.3 Applications of LA-ICP-MS in analytical chemistry 14 II.4. Calibration strategies 18 Chapter III. Material and methods 22 III.1 Study approach 22 III.2 Apparatus 23 III.2.1 Laser ablation UP213 device 23 III.2.2 ICP-MS 7500a system 26 III.3 Reagent and materials 28 III.4 Preparation of samples for LA-ICP-MS 28 III.4.1 Preparation of standards for LA-ICP-MS 28 III.4.2 Preparation of various Methylene Blue( MB) and NaCl concentrations 29 Chapter IV. Results and discussion 31 IV.1 Selection and optimization of major operational parameters 31 IV.1.1 Laser energy level 31 IV.1.2 Dwell time 32 IV.1.3 Defocus distance 33 IV.2 Sample analysis using LA-ICP-MS 36 IV.3 Quality control of proposed method 40 IV.3.1 External calibration 40 IV.3.2 Standard addition calibration 43 IV.4 Effects of MB and NaCl on signal intensity 45 IV.4.1 Effects of MB concentrations 45 IV.4.2 Effects of NaCl on signal intensity 45 Chapter V. Applications 48 V.1 Determination of elements in water samples 48 V.1.1 Sample collection and analysis 48 V.1.2 Results and discussion 49 V.2 Investigation of metals present in the atmosphere before and after firework festival in Yanshui, Tainan, Taiwan 53 V.2.1 Aerosol sample collection and analysis 53 V.2.2 Results and discussion 57 Chapter VI. Conclusion 72 References 74 Appendix 94 List of Tables Table 4.1 Operating conditions for the LA-ICP-MS system.....................................................36 Table 4.2 Correlation coefficients (R2) and the lowest MDLs (ng mL−1) obtained using LA-ICP-MS and ICP-MS.....................................................41 Table 4.3 Recoveries of elemental analytes from the 5 ng mL−1 standard solution using LA-ICP-MS (n=3)………………………………………………………………………42 Table 4.4 Concentrations of elements determined in SRM 1643e………………………………………………………………………43 Table 5.1 Analyses of real samples using LA-ICP-MS and conventional ICP-MS (ng mL−1)………………………………………51 Table 5.2 ELPI specification ………………………………………55 Table 5.3 Sampling schedule and meteorological parameters during fireworks festival in Yanshui, Tainan…………………56 Table 5.4 Element concentrations ( arithmetic mean±SD, in ng/m3) of nano, submicron, micron particles collected during the pre-fireworks period in Yanshui Township, Tainan County…………………………………………………………………… 58 Table 5.5 Element concentrations ( arithmetic mean±SD, in ng/m3) of nano, submicron,micron particles collected during the post-fireworks period in Yanshui Township, Tainan County…………………………………………………………………… 59 Table 5.6 Element concentrations in PM10(µg/m3) observed during various fireworks festivals from around the world… 63 List of Figures Fig. 2.1. Schema of a laser ablation system, using ICP-OES and/or ICP-MS 9 Fig. 2.2. Fractionation versus wavelength 13 Fig. 2.3. C, Cu and Zn distribution in a cross section of rat brain sample (tumor tissue) 15 Fig. 2.4. Application of LA-ICP-MS 21 Fig. 3.1. Scheme of converting liquid droplet into dried droplet by evaporation of solvent 23 Fig. 3.2. Photograph of laser ablation device 213 24 Fig. 3.3. View of changing defocus of crater size 26 Fig. 3.4. Photograph of ICP-MS 7500a system 27 Fig. 3.5. Photograph of standard solution on the filter medium 29 Fig. 3.6. Scheme of preparing standard and real filter samples for LA-ICP-MS 30 Fig. 4.1. Effects of laser energy level on the ion intensity 32 Fig. 4.2 Effects of dwell time on the ion intensities 33 Fig. 4.3. Effects of defocus distance on the ion intensity 35 Fig. 4.4. Still video images of LA of dried droplets (1µL) on the PTFE filter membrane 37 Fig. 4.5. Transient signals obtained using LA-ICP-MS for the elements Mn, Co, Ni, Cu, As and Pb in the blake and 5 and 20 ngmL-1 standard solutions 38 Fig. 4.6. Comparison of the signal intensities of 208Pb from the blank and the 50 ngmL-1 standard solution using LA-ICP- MS 39 Fig. 4.7. Standard addition calibration curves of 63Cu and 65Zn in tap water with LA-ICP-MS (n=3) 44 Fig. 4.8. Effects of MB concentration on the signal intensity of the various elements 46 Fig. 4.9. Effect of NaCl concentration on the signal intensity of the various elements 47 Fig. 5.1. Principle of preparing real filter sample and process of LA-ICP-MS 50 Fig. 5.2. Maps of the sampling site 54 Fig. 5.3. Average element concentrations in (a) PM10 and (b) PM.2.5 (c) PM2.5-to- PM10 ratios during the pre- and post- fireworks display periods 61 Fig. 5.4. Mass concentration distributions of Na, Mg, Al, Si, Ca and Fe with respect to particle size in ambient air during the fireworks festival 65 Fig. 5.5. Concentration distribution of K, V, Cr, Mn, Cu, Zn, As, Sr, Ba, and Pb elements with respect to particle size in ambient air during the fireworks festival 67 Fig. 5.6. Toxicity of different sized particles toward BEAS-2B cells after incubation for 24 h 70

    References
    1. J. O. Duruibe, M. O. C. Ogwuegbu, J. N. Egwurugwu, Heavy metal pollution and human biotoxic effects, Int. J. Phys. Sci. 2 (2007) 112-118.
    2. Y. Ming-Ho, (2005). Environmental Toxicology: Biological and Health Effects
    of Pollutants, Chap.12, CRC Press LLC, ISBN 1-56670-670-2, 2nd Edition,
    Boca Raton,USA.
    3. V. Rajaganapathy, F. Xavier, D.Sreekumar, P. K. Madal, Heavy metal contamination in soil, water and fodder and their presence in livestock and products: A review, J. Environ. Sci. Technol. 4 (2011) 234-249.
    4. J. O. Nriagu, Aglobal assessment of natural sources of atmospheric trace metals, Nature (1989) 47- 49.
    5. L. K. Wang, J. P. Chen, Y. T. Hung, N. K. Shammas, Heavy metals in the Environment, CRC Press, Taylor & Francis group, LLC, 2009.
    6. B. K. Lee, T. H. Nguyen, Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan, Korea, Aerosol Air Qual. Res. 11 (2011) 679-688.
    7. Y. F. Wang, H. R. Chao, L. C. Wang, G. P. Chang- Chien, T. C. Tsou, Characteristics of heavy metals emitted from a heavy oil-fueled power plant in Northern Taiwan, Aerosol Air Qual. Res. 10 (2010) 111-118.
    8. Y. F. Wang, K.L. Huang, C. T. Li, H. H. Mi, J. H. Luo, P.J. Tsai, Emissions of fuel metals content from a diesel vehicle engine, Atmos. Environ. 37(2003) 4637- 4643.
    9. M. Halim, P. Conte, A. Piccolo, Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances, Chemosphere 52 (2003) 265–275
    10. T. Makino, Y. Luo, L. Wu, Y. Sakura,Y. Maejima, I. Akahane, T. Arao, Heavy Metal Pollution of Soil and Risk Alleviation Methods Based on Soil Chemistry, Pedologist (2010) 38-49.
    11. M. A. Addo, E.O. Darko, C. Gordon, B. J. B. Nyarko, J. K. Gbadago, E. Nyarko, H. A. Affum, B. O. Botwe, Evaluation of Heavy Metals Contamination of Soil and Vegetation in the Vicinity of a Cement Factory in the Volta Region, Ghana, Int. J. Sci. Technol., 2 (2012) 40-50.
    12. D. Kar; P. Sur; S. K. Mandal; T. Saha; R. K. Kole, Assessment of heavy metal pollution in surface water, Int. J. Environ. Sci. Tech., 5 (2008) 119-124.
    13. T. C. Hutchinson and K. M. Meema, Lead, Mercury, Cadmium and Arsenic in the Environment, Published by John Wiley & Sons Ltd, 1987
    14. M. T. Ny, B. K. Lee, Size Distribution of Airborne Particulate Matter and Associated Metallic Elements in an Urban Area of an Industrial City in Korea, Aerosol Air Qual. Res. 11 (2011) 643-653.
    15. R. J. Zhang, Z. X. Shen, T. T. Cheng, M. G Zhang, Y. J. Liu, The Elemental Composition of Atmospheric Particles at Beijing during Asian Dust Events in Spring 2004, Aerosol Air Qual. Res. 10 (2010) 67-75.
    16. Y. F. Wang, K.L. Huang, C. T. Li, H. H. Mi, J. H. Luo, P.J. Tsai, Emissions of fuel metals content from a diesel vehicle engine, Atmos. Environ. 37(2003) 4637-4643
    17. M. Y. Wey, W. Y. Ou, Z. S. Liu, H. H. Tseng, W. Y Yang, B. Ch. Chiang, Pollutants in incineration flue gas, J. Hazard. Mat. B82 (2001) 247–262.
    18. U. C. Kulshrestha, T. N. Rao, S. Azhaguvel, M. J. Kulshrestha, Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India, Atmos. Environ. 38 (2004) 4421-4425.
    19. T. Moreno, X. Querol, A. Alastuey, M. C. Minguillón, J. Pey, S. Rodriguez, J. V. Miró, C. Felis, W. Gibbons, Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays, Atmos. Environ. 41 (2007) 913-922.
    20. G. Steinhauser, J. H. Sterba, M. Foster, F. Grass, M. Bichler, Heavy metals from pyrotechnics in New Years Eve snow, Atmos. Environ. 42 (2008) 8616-8622.
    21. X. J. Deng, L. L. Lu, H. W. Li, F. Luo, The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method, J. Hazard. Mater. 183 (2010) 923–930.
    22. F. Monaci, F. Moni, E. Lanciotti, D. Grechi, R. Bargagli, Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead, Environ. Pollut.107 (2000) 321-327.
    23. R. Vecchi, V. Bernardoni, D. Cricchio, A. D’Alessandro, P. Fermo, F. Lucarelli, S. Nava, A. Piazzalunga, G. Valli, The impact of fireworks on airborne particles, Atmos. Environ. 42 (2008) 1121-1132.
    24. P. Miretzkya, A. F Cirelli, Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review, J. Hazard. Mater. 180 (2010) 1–19.
    25. G. C. Fang, C. C. Lin, J. H. Huang, Y. L. Huang, Measurement of Ambient Air Arsenic (As) Pollutant Concentration and Dry Deposition Fluxes in Central Taiwan, Aerosol Air Qual. Res. 11(2011) 218–229.
    26. T. Stehrer & J. Heitz & J. D. Pedarnig & N. Huber &B. Aeschlimann & D. Günther & H. Scherndl & T. Linsmeyer & H. Wolfmeir & E. Arenholz, LA-ICP-MS analysis of waste polymer materials, Anal. Bioanal. Chem. 398 (2010) 415–424.
    27. L. V. Vaeck, K. Poels, S. de Nollin, A. Hachimi, R. Gijbels, Laser microprobe mass spectrometry: principle and applications in biology and medicine, Cell Biology International 21(1997)634-648.
    28. L. Halicz, D. Günther, Quantitative analysis of silicates using LA-ICP-MS with liquid calibration, , J. Anal. At. Spectrom. 19 (2008) 1539-1545.
    29. S. Khatib-Shahidi, M. Andersson, J. L. Herman,T. A. Gillespie, R. M. Caprioli, Direct Molecular Analysis of Whole-Body Animal Tissue Sections by Imaging MALDI Mass Spectrometry, Anal. Chem. 78 (2006) 6448-6456.
    30. M. A. Gondal, T. Hussain, Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy, Talanta 71 (2007)73–80.
    31. K. Dreisewerd, F. Draude, S. Kruppe, A. Rohlfing, S. Berkenkamp, G. Pohlentz, Molecular Analysis of Native Tissue and Whole Oils by Infrared Laser Mass Spectrometry, Anal. Chem. 79 (2007) 4514-4520.
    32. S. F. Durrant, Laser ablation inductively coupled plasma mass pectrometry:achievements, problems, prospects, J. Anal. At. Spectrom. 14 (1999) 1385–1403.
    33. C. Pickhardt • J. S. Becker, •H. J. Dietze, A new strategy of solution calibration
    in laser ablation inductively coupled plasma mass spectrometry for multielement trace analysis of geological samples, Fresenius J Anal Chem 368 ((2000))173–181.
    34. K. E. Jarvis, J. G. Williams, Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples, Chemical Geology 106 (1993) 251 -262.
    35. R. E. Russo, X. Mao, H. Liu, J. Gonzalez, S. S. Mao, Laser ablation in analytical chemistry—a review, Talanta 57 (2002) 425–451.
    36. S. D’Ilio, N. Violante, M. Di Gregorio, O. Senofonte, F. Petrucci, Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system, Anal. Chim. Acta 579 (2006) 202–208.
    37. F. Pointurier, P. He´met, A. Hubert, Assessment of plutonium measurement in the femtogram range by ICP-MS; correction from interfering polyatomic species, J. Anal. At. Spectrom. 23 (2008) 94–102.
    38. C. F. Wang, C. J. Chin, S. K. Luo, L. C. Men, Determination of chromium in airborne particulate matter by high resolution and laser ablation inductively coupled plasma mass spectrometry, Anal. Chim. Acta 389 (1999) 257-266.
    39. M. Guillong, C. A. Heinrich, Sensitivity enhancement in laser ablation ICP-MS using small amounts of hydrogen in the carrier gas, J. Anal. At. Spectrom. 22 (2007)1488–1494.
    40. J. W. Ferguson, R.S. Houk, High resolution studies of the origins of polyatomic ions in inductively coupled plasma-mass spectrometry, Part I. Identification methods and effects of neutral gas density assumptions, extraction voltage, and cone material, Spectrochim. Acta Part B 61 (2006) 905–915.
    41. Z. Chen, M. Megharaj, R. Naidu, Removal of interferences in the speciation of chromium using an octopole reaction system in ion chromatography with inductively coupled plasma mass spectrometry, Talanta 73 (2007) 948–952.
    42. N. Forsgard, P.Sjo¨ berg, D. Bylund, M. Andersson, J. Pettersson, Screening and identification of aluminium-containing biomolecules by column-switched LC-ICP-MS and LC-ESI-MS/MS, J. Anal. At. Spectrom. 22 (2007)1397–1402.
    43. Richard A. Vanderpool* and Wayne T. Buckley, Liquid-Liquid Extraction of Cadmium by Sodium Diethyldithiocarbamate from Biological Matrixes for Isotope Dilution Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 71 (1999) 652-659.
    44. R. C. Hutton, A. N. Eaton, Analysis of Solutions Containing High Levels of Dissolved Solids by Inductively Coupled Plasma Mass Spectrometry, J. Anal. At. Spectrom. 3 (1988) 547-550.
    45. J. Wang, W. L. Shen, B. S. Sheppard, E. H. Evans, J. A. Carusot, Effect of Ion-lens Tuning and Flow Injection on Non-spectroscopic Matrix Interferences in Inductively Coupled Plasma Mass Spectrometry, J. Anal. At. Spectrom. 5 (1990) 445-449.
    46. J. R. Garbarino, H. E. Taylor, Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry, Anal. Chem. 59 (1987) 1568-1575.
    47. P.M. Outridge, W. Doherty, D.C. Gregoire, Ablative and transport fractionation of trace elements during laser sampling of glass and copper, Spectrochim. Acta Part B 52(1997)2093-2102.
    48. H. Liu, O. V. Borisov, X. Mao, S. Shuttleworth, R. E. Russo, Pb/U Fractionation during Nd:YAG 213 nm and 266 nm Laser Ablation Sampling with Inductively Coupled Plasma Mass Spectrometry, Appl. Spectrom. 54 (2000) 1435-1442.
    49. D. M. Hughes, C. L. Chakrabarti, D. M. Goltz, Seawater as a multi-component physical carrier for ETV-ICP-MS, Spectrochim. Acta Part B 50 (1995) 425-440.
    50. D. C. Gregoire, R. E. Sturgeonb, Analyte transport efficiency with electrothermal vaporization inductively coupled plasma mass Spectrometry, Spectrochim. Acta Part B 54 (1999)773-786.
    51. J. J. Gonzalez, C. Y. Liu, S. B. Wen, X. Mao, R. E. Russo, Metal particles produced by laser ablation for ICP–MS measurements, Talanta 73 (2007) 567–576.
    52. T. Kantor, Interpreting some analytical characteristics of thermal dispersion methods used for sample introduction in atomic spectrometry, Spectrochim. Acta Part B 43 (1988)1299-1320.
    53. A. L. Gray, Solid Sample Introduction by Laser Ablation for Inductively Coupled Plasma Mass Spectrometry, Analyst 110 (1985) 551-556.
    54. J. S. Crain, D. L. Gallimore, Determination of Trace Impurities in Uranium Oxides by Laser Ablation Inductively Coupled Plasma Mass Spectrometry, J. Anal. At. Spectrom.7 (1992) 605-610.
    55. S. Tanaka, N. Yasushi, N. Sato, T. Fukasawa, S. J. Santosa, K. Yamanaka, T. Ootoshi, Rapid and simultaneous multi-element analysis of atmospheric particulate matter using inductively coupled plasma mass spectrometry with laser ablation sample introduction , J. Anal. At. Spectrom.13 (1998) 135-140.
    56. W. Klemm, G. Bombach, A simple method of target preparation for the bulk analysis of powder samples by laser ablation inductively coupled plasma mass spectrometry, Fresenius’ J. Anal. Chem. 370 (2001) 641-646.
    57. C. Pickhardt, H. J. Dietze, J. S. Becker, Laser ablation inductively coupled plasma mass spectrometry for direct isotope ratio measurements on solid samples, Inter. J. Mass Spectrom. 242 (2005) 273-280.
    58. P. van de Weijer, W. L. M. Baeten, M. H. J. Bekkers, P. J. M. G. Vullings, Fast Semi-quantitative Survey Analysis of Solids by Laser Ablation Inductively Coupled Plasma Mass Spectrometry, J. Anal. At. Spectrom.7 (1992) 599-603.
    59. S. F. Durrant, Multi-elemental analysis of environmental matrices by laser ablation inductively coupled plasma mass spectrometry, Analyst 117 (1992) 1585-1592.
    60. E. F. Cromwell, P. Arrowsmith, Semiquantitative Analysis with Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 67 (1995) 131-138.
    61. F. Boué-Bigne, B. J. Masters, J. S. Crighton, B. L. Sharp, A calibration strategy for LA-ICP-MS analysis employing aqueous standards having modified absorption coefficients, J. Anal. At. Spectrom.14 (1999) 1665-1672.
    62. E. R. Denoyer, K. J. Fredeen,J. W. Hager, Laser Solid Sampling for Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 63 (1991) 445-457.
    63. J. G. Williams, K. E. Jarvis, Preliminary Assessment of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Quantitative Multi-element Determination in Silicates, J. Anal. At. Spectrom.8 (1993) 25-34.
    64. A. J. G. Mank, P. R. D. Mason, A critical assessment of laser ablation ICP MS for depth analysis in silica - based glass samples, J. Anal. At. Spectrom.14 (1999) 1143-1153.
    65. N. J. G. Pearce, J. A. Westgate, W. T. Perkins, Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: Quantitative and single internal standard-multielement methods, Quatern. Int. 34-36 (1996) 213-227.
    66. A. Raith, R.C. Hutton, I.D. Abell, J. Crighton, Non-destructive Method of Metals and Alloys for Laser Ablation Inductively Plasma Mass Spectrometry, J. Anal. At. Spectrom.10 (1995) 591-594.
    67. N. J. Saetveit, S. J. Bajic, D. P. Baldwin, R. S. Houk, Influence of particle size on fraction with nanosecond and femtosecond laser ablation in brass by online differential mobility analysis and inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom.23 (2008) 54-61.
    68. L. Allen, St. Georgitis, D.P. Myers and K. Brushwyler, Trace Elemental Analysis of Metals by Laser Ablation Inductively Coupled Plasma Time of Flight Mass Spectrometry, phys. stat. sol. (a) 167 (1998) 357-364.
    69. W. T. Perkins, R. Fuge, N. J. G. Pearce, Quantitative Analysis of Trace Elements in Carbonates Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry, J. Anal. At. Spectrom.6 (1991) 445-449.
    70. N. J. G. Pearce, W. T. Perkins, R. Fuge, Developments in the quantitative and semi-quantitative determination of trace elements in carbonates by laser ablation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom.7 (1992) 595-598.
    71. F. Bea, P. Montero, A. Stroh, J. Baasner, Microanalysis of minerals by an Excimer UV-LA- ICP-MS system, Chem. Geol. 133 (1996) 145-156.
    72. M. Motelica-Heino, S. Rauch, G. M. Morrison, O. F. X. Donard, Determination of palladium, platinum and rhodium concentrations in urban road sediments by laser ablation – ICP-MS, Anal. Chim. Acta 436 (2001) 233-244.
    73. Y. L. Lee, C. C. Chang, S. J. Jiang, Laser ablation inductively coupled plasma mass spectrometry for the determination of trace elements in soil, Spectrochim. Acta Part B, 58 (2003) 523-530.
    74. B. Fernández, F. Claverie, C. Pecheyran, O. F. X. Donard, Solid-spiking isotope dilution laser ablation ICP-MS for the direct and simultaneous determination of trace elements in soils and sediments, J. Anal. At. Spectrom.23 (2008)367-377.
    75. T. Prohaska, C. Latkoczy, G. Schultheis, M. Teschler-Nicola,G. Stingeder, Investigation of Sr isotope ratios in prehistoric human bones and teeth using laser ablation ICP-MS and ICP-MS after Rb/Sr separation, J. Anal. At. Spectrom. 17 (2002) 887-891.
    76. E. Elish, Z. Karpas, A. Lober, Determination of uranium concentration in a single hair strand by LA ICP MS applying continuous and single pulse ablation, J. Anal. At. Spectrom.22 (2007) 540-546.
    77. M. Legrand, R. Lam, M. Jensen-Fontaine, E. D. Salin, H. M. Chan, Direct detection of mercury in single human hair strand by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), J. Anal. At. Spectrom. 19 (2004) 1287-1288.
    78. R. Lam, E. D. Salin, Analysis of pharmaceutical tablets by laser ablation inductively coupled plasma mass atomic emission spectrometry and mass spectrometry(LA-ICP-AES and LA-ICP-MS), J. Anal. At. Spectrom. 19 (2004)938-940.
    79. K. Baba, E. Watanable, H. Eun, M. Ishizaka, Direct determination of cadmium in rice flour by laser ablation –ICP-MS, J. Anal. At. Spectrom. 18 (2003) 1485- 1488.
    80. Lu Yang , Ralph E. Sturgeon and Zoltán Mester , Dried-droplet laser ablation ICP-MS of HPLC fractions for the determination of selenomethionine in yeast, J. Anal. At. Spectrom. 20 (2005) 431- 435.
    81. K. Tanaka, Y. Takahashi, H. Shimizu, Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: An examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis, Anal. Chim. Acta 583 (2007) 303–309.
    82. K. E. Jarvis, J. G. Williams, Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples, Chem. Geolog 106 (1993) 251 -262.
    83. T. Wyndham, M. McCulloch, S. Fallon, C. Alibert, High-resolution coral records of rare earth elements in coastal seawater: Biogeochemical cycling and a view environmental proxy, Ceochim. Cosmochim. Acta 68 (2004) 2067-2080.
    84. B. Wanner, Ch. Moor, P. Richner, R. Brönnimann, B. Magyar, Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for spatially resolved trace element determination of solids using an autofocus system, Spectrochim. Acta Part B 54 (1999) 289-298.
    85. G. Sarah, B. Gratuze, J. N. Barrandon, Application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the investigation of ancient silver coinsw, J. Anal. At. Spectrom. 22 2007)1163–1167.
    86. L. Kleiber, H. Fink, R. Niessner, U. Panne, Strategies for the analysis of coal by laser ablation inductively coupled plasma mass spectroscopy, Anal Bioanal Chem 374 (2002) 109–114.
    87. D.A. Spears, A.G. Borrego, A. Cox, R.M. Martinez-Tarazona, Use of laser ablation ICP-MS to determine trace element distributions in coals, with special reference to V, Ge and Al, International Journal of Coal Geology 72 (2007) 165–176.
    88. E. Hoffmann, C. Liidke, H. Scholze, H. Stephanowitz, Analytical investigations of tree rings by laser ablation ICP-MS, Fresenius J. Anal. Chem. 350 (1994) 253-259.
    89. S. A. Watmough, T. C. Hutchinson, R. D. Evans, Application of laser ablation coupled plasma - mass spectrometry in dendrochemical analysis, Environ. Sci. Technol.37 (1997) 114-118.
    90. H. Toland, B. Perkins, N. Pearce, F. Keenan, M. J. Leng, A study of sclerochronology by laser ablation ICP-MS, J. Anal. At. Spectrom. 15(2000)1143-1148.
    91. Keiko Suzuki, Characterisation of airborne particulates and associated trace metals deposited on tree bark by ICP-OES, ICP-MS, SEM-EDX and laser ablation ICP-MS, Atm. Environ. 40 (2006) 2626–2634.
    92. J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, R. Kizek, Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B 64 (2009) 67–73.
    93. K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, V. Otruba, Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study, Spectrochim. Acta Part B 63 (2008) 1139–1144.
    94. S. Gligorovski, J. T. Van Elterenb, I. Grgić, A multi-element mapping approach for size-segregated atmospheric particles using laser ablation ICP-MS combined with image analysis, Sci. The Total Environ. 407 (2008) 594-602.
    95. J. Sabine Becker, Uwe Breuer, Hui-Fang Hsieh, Tobias Osterholt, Usarat Kumtabtim, Bei Wu, Andreas Matusch, Joseph A. Caruso,| and Zhenyu Qin, Bioimaging of Metals and Biomolecules in Mouse Heart by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Secondary Ion Mass Spectrometry, Anal. Chem. 82 (2010) 9528–9533.
    96. J. Sabine Becker, M. Zoriy, B. Wu, A. Matusch, J. Susanne Becker, Imaging of essential and toxic elements in biological tissues by LA-ICP-MS, J. Anal. At. Spectrom. 23 (2008)1275–1280.
    97. C. J. Chin, C. F. Wang, S. L. Jeng, Multi-element analysis of airborne particulate matter collected on PTFE-membrane filters by laser ablation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 14 (1999) 663–668.
    98. E. Manoli, D. Voutsa, C. Samara, Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece, Atmos. Environ. 36 (2002) 949-961.
    99. M. Singh, P. A. Jaques, C. Sioutas, Size distribution and diurnal characteristics of particle-bound metals in source and receptor sites of Los Angeles Basin, Atmos. Environ. 36 (2002) 1675-1689.
    100. Y. Wang, G. Zhuang, C. Xu, Zh. An, The air pollution caused by the burning of fireworks during the lantern festival in Beijing, Atmos. Environ. 41 (2007) 417-431.
    101. S. C. Barman, R. Singh, M. P. S. Negi, S. K. Bhargava, Ambient air quality of Lucknow City (India) during use of fireworks on Diwali Festival, Environ. Monit. Assess.137 (2008) 495-504.
    102. C. F. Wang, S. L. Jeng, F. J. Shieh, Determination of arsenic in airborne particulate matter by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 12 (1997) 61-67.
    103. T. Okuda, J. Kato, J. Mori, M. Tenmoku, Y. Suda, S. Tanaka, K. He, Y. Ma, F. Yang, X. Yu, F. Duan, Daily concentrations of trace metals in aerosols in Beijing, China, determined by using inductively coupled plasma mass spectrometry equipped with laser ablation analysis, and source identification of aerosols, Sci. Total Environ. 330 (2004) 145-158.
    104. L. Yang, R. E. Sturgeon and Z. Mester, Quantitation on trace metals in liquid samples by dried-droplet laser ablation inductively coupled plasma mass spectrometry, Anal. Chem. 77 (2005) 2971-2977.
    105. J. V. Cizdziel, Determination of lead in blood by laser ablation ICP-TOF-MS analysis of blood spotted and dried on filter paper: a feasibility study, Anal. Bioanal. Chem. 388 (2007) 603-611.
    106. C. M. R. Almeida, M. T. S. D. Vasconcelos, UN-irradiation and MW-digestion pretreatment of Port wine suitable for the determination of lead isotope ratios by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom.14 (1999) 1815-1821.[106]
    107. K. Ndung’u, S. Hibdon, A. R. Flegal, Determination of lead in vinegar by ICP-MS and GFAAS: evaluation of different sample preparation procedures, Talanta 64 (2004) 258-263.[107]
    108. I. Rodushkin, F. Ödman, S. Branth, Multielement analysis of whole blood by high resolution inductively couple plasma mass spectrometry, Fresenius’ J. Anal Chem. 364 (1999) 338-346.[108]
    109. D. Beauchemin, J. W. McLaren, A. P. Mykytiuk, S. S. Berman, Determination of trace metals in an open ocean water reference material by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 3 (1988) 305-308.
    110. H. Falk, R. Geerling, B. Hattendorf, K. Krengel-Rothensee, K. P. Schmidt, Capacity and limits of ICP-MS for direct determination of element traces in saline solutions, Fresenius’ J. Anal. Chem. 359 (1997) 352-356.
    111. U. E. A. Fittschen, N. H. Bings, S. Hauschild, S. Förster, A. F. Kiera, E. Karavani, A. Frömsdorf, J. Thiele, Characteristics of picoliter droplet dried residues as standards for direct analysis techniques, Anal. Chem. 80 (2008) 1967-1977.
    112. I. Kroslakova, D. Günther, Elemental fractionation in laser ablation –inductively coupled plasma-mass spectrometry: evidence for mass load induced matrix effects in the ICP during ablation of a silicate glass, J. Anal. At. Spectrom.22 (2007) 51-62.
    113. R. E. Russo, X. L. Mao, O. V. Borisov, Haichen Liu, Influence of wavelength on fractionation in laser ablation ICP-MS, J. Anal. At. Spectrom.15 (2000) 1115-1120.
    114. C. C. Garcia, H. Lindner, K. Niemax, Laser ablation inductively coupled plasma mass spectrometry - current shortcomings, practical suggestions for improving performance, and experiments to guide future development, J. Anal. At. Spectrom.24 (2009) 14-26.
    115. C. Pickhardt, J. S. Becker, H-J. Dietze, A new strategy of solution calibration in laser ablation inductively coupled plasma mass spectrometry for multielement trace analysis of geological samples, Fresenius J. Anal. Chem.368 (2000) 173-181.
    116. A. J. Fitzpatrick, T. K. Kyser, D. Chipley, D. Beauchemin, Fabrication of solid calibration standards by sol-gel process and use in laser ablation ICP-MS, J. Anal. At. Spectrom. 23 (2007) 244-248.
    117. Ch. Simons, S. Hanning, A. Wegner, Ch. Mans, A. Janben, M. Kreyenschmidt, J. A. C. Broekaert, Comparative study on the homogeneity of polymeric calibration materials using LA-ICP-MS, J. Anal. At. Spectrom. 23 (2008) 1038 -1041.
    118. M. Tibi, K. G. Heumann, Isotope dilution mass spectrometry as a calibration method for the analysis of trace elements in powder samples by LA-ICP-MS, J. Anal. At. Spectrom.18 (2003) 1076-1081.
    119. B. Fernández, F. Claverie, Ch. Pécheyran, O. F. X. Donard, Solid-spiking isotope dilution laser ablation ICP-MS for the direct and simultaneous determination of trace elements in soils and sediments, J. Anal. At. Spectrom. 23 (2008) 367-377.
    120. C. Pickhardt, A. V. Izmer, M. V. Zoriy, D. Schaumlöffel, J. Sabine Becker, On-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry using a microflow nebulizer inserted in the laser ablation chamber, Int. J. Mass Spectrom. 248 (2006) 136–141.
    121. N.I. Ward, S. F. Durant, A. L. Gray, Analysis of biological standard reference materials by laser ablation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 7 (1992) 1139-1146.
    122. D. Grunther, H. Cousin, B. Magyar, I. Leopold, Calibration studies on dried aerosols using LA-ICP-MS, J. Anal. At. Spectrom. 12 (1997) 165-170.
    123. Y. K. Hsieh, L. K. Chen, H. F. Hsieh, C. H. Huang, C. F. Wang, Elemental analysis of airborne particulate matter using an electrical low-pressure impactor and laser ablation/inductively coupled plasma mass spectrometry. J.Anal.At. Spectrom. 26 (2011)1502-1508.
    124. Y. Wang, G. Zhuang, C. Xu, Z. An, The air pollution caused by the burning of fireworks during the Lantern festival in Beijing, Atmos. Environ. 41 (2007) 417-431.
    125. C. C. Lin, S. J. Chen, K. L. Huang, W. I. Hwang, G. P. C. Chien, W. Y. Lin, Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily traffic road, Environ. Sci. Technol. 39 (2005) 8113-8122.
    126. E. Hedberg, L. Gidhagen, C. Johansson, Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization, Atmos. Environ. 39 (2005) 549-561.
    127. E. Furimsky, Characterization of trace element emissions fromm coal combustion by equilibrium calculations. Fuel Processing Technol. 63(2000) 29-44.
    128. J. A. Conkling, Chemistry of pyrotechnics: Basic Principles and Theory, Marcel Dekker Inc., New York, 1979.
    129. E. Vermeij, W. Duvalois, R. Webb, M. Koeberg, Morphology and composition of pyrotechnic residues formed at different levels of confinement, Forensic Sci. Int. 186 (2009) 68-74.
    130. G. M. Marcazzan, S. Vaccaro, G. Valli, R. Vecchi, Characterization of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy), Atmos. Environ. 35(2001) 4639-4650.
    131. M. A. Yamasoe, P. Artaxo, A. H. Miguel, A. G. Allen, Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water - soluble species and trace elements, Atmos. Environ. 34 (2000) 1641-1653.
    132. M. Ikegami, K. Okada, Y. Zaizen, Y. Makino, J. B. Jensen, J. L. Gras, H. Harjanto, Very high weight ratios of S/K in individual haze particles over Kalimantan during the 1997 Indonesian forest fires, Atmos. Environ. 35 (2001) 4237-4243.
    133. D. Y. Liu, D. Rutherford, M. Kinsey, K. A. Prather, Real-time monitoring of pyrotechnically derived aerosol particles in the troposphere, Anal. Chem. 69 (1997) 1808-1814.
    134. F. Drewnick, S. S. Hings, J. Curtius, G. Eerdekens, J. Williams, Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany, Atmos. Environ. 40 (2006) 4316-4327.
    135. C. C. Lin, S. J. Chen, K. L. Huang, W. I. Hwang, G. P. C. Chien, W. Y. Lin, Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily traffic road, Environ. Sci. Technol. 39 (2005) 8113-8122.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE