研究生: |
馮桂蓮 |
---|---|
論文名稱: |
具Brusselator反應的三結合核模型之分歧問題探討 Numerical Investigation for the Bifurcation Problems of Three Coupled Cells with Brusselator Reaction |
指導教授: | 簡國清 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 隱函數定理 、牛頓迭代法 、局部延拓法 、虛擬弧長延拓法 、轉彎點 、分歧點 |
外文關鍵詞: | Implicit theorem, Newton iterative method, Local continuation method, Pseudo-arclength mehod, Turning point, Bifurcation point |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
在本文中,我們以分歧理論的基礎—隱函數定理為基本工具,利用割線預測法、牛頓迭代法和擬弧長延拓法等數值方法,來對一具Brusselator反應之三結合核模型的解路徑做數值探討。對參數在正值及負值的解路徑圖進行分析,並求得其轉彎點和分歧點。
Abstract
In this paper, we use the implicit function theorem, secant predictor method, Newton iterative method and pseudo-arclength continuation method to investigate the bifurcation problems of three couple cells with Brusselator reaction. Finally, we analyze the solution paths of the model and find the turning points and bifurcation points of the model.
參考文獻
[1] Atkinson, K. E., The numerical solution of bifurcation problems, SIAM J. Numer. Anal., 14(4), pp.584-599, (1977).
[2] Bauer, L., Reiss, E. L., and Keller, H. B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, pp. 529-568, (1970)
[3] Brezzi,F., Rappaz, J. and Raviart, P. A., Finite dimensional approxi- mation of a bifurcation problems, Numer. Math., 36, pp.1-25, (1980).
[4] Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340, (1971).
[5] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, (1979).
[6] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York, pp.1-35, (1977).
[7] Iooss, G and Joseph, D. D., Elementary Stability and Bifurcation Theory, Spring-Verleg, (1989).
[8] Keller, H. B., in “Recent Advances in Numerical Analysis”, Ed. by C. de Boor and G. H. Golub, Academic Press, New York, pp.73, (1978).
[9] Keller, H. B. Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz, P. H. Academic Press, pp.359-384, (1977).
[10] Keller, H. B. Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research , Springer-Verlag, (1987).
[11] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel, (1984).
[12] Lazer, A. C., and McKenna, P. J. A Symmetry Theorem and Applications to Nonlinear Partial Differential Equations. J. Diff. Eq. 72, pp.95-106, (1988).
[13] Lazer, A. C., and McKenna, P. J. Large Amplitude Periodic Oscillations in Suspension Bridge: Some New Connections with Nonlinear Analysis. SLAM Rev. 32, pp.537-578, (1989).
[14] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237, (1980).
[15] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York).
[16] Wacker, H. (ed-), Continuation Methods, Academic Press, New York, (1978).
[17] World of Bifurcation, www.bifurcation.de, (2001).
[18] 雷晋干,馬應南,分歧問題的逼近理論與數值方法, pp.213-230, (1993).