簡易檢索 / 詳目顯示

研究生: 蔡依良
Yi-Liang Tsai
論文名稱: 銅金屬在化學機械平坦化製程研漿中電化學行為之研究
A Study of Electrochemical behavior of Copper in Chemical Mechanical Planarization Slurry
指導教授: 施漢章
Han-C Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 99
中文關鍵詞: 銅製程化學機械平坦化交流組抗硝酸BTA檸檬酸電化學
外文關鍵詞: copper metallization, CMP, AC Impedance, nitric acid, BTA, Citric acid, Electrochemical
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    在現今IC製程朝向體積減少以及速度更快的前提下,銅製程以及化學機械平坦化(CMP)的運用已變得不可或缺。銅在金屬化學機械平坦化中的化學反應特性與其他金屬如︰鈦,鋁,鎢及鉭不同,銅不會在金屬表面形成一層穩定的氧化物,取而代之的是一種偏向溶解的反應,也因此難以控制金屬化學機械平坦化的研磨速率以及造成淺盤凹陷(dishing)的效應。

    在本實驗中,藉由即時電化學的量測,我們可以得到完整的直流極化曲線及交流阻抗曲線,再藉由合理的假設及等效電路的模擬,就能清楚的了解銅在硝酸系統及其添加劑中的電化學反應:

    1. 銅在硝酸溶液中形成電雙層結構(EDL)及不穩定的表面氧化物,研磨時電雙層被壓縮且氧化物層被磨除。

    2. 在硝酸溶液中添加檸檬酸(Citric acid),則抑制了陰極反應,造成整體反應變慢,但主要反應機制與銅在硝酸溶液中相同;研磨時不穩定的表面氧化物被拋去,加上檸檬酸很難擴散到研磨墊與金屬中抑制陰極反應,使抑制效果變得輕微。

    3. 在硝酸溶液中添加抑制劑(1H-BTA),則BTA會與Cu+在銅表面形成穩定且緻密的Cu-BTA結構,因此大幅的抑制了表面反應進而減緩整體的反應速率。研磨時Cu-BTA層會被拋去,但仍會形成動態的Cu-BTA層且對減緩反應速率有一些效果。

    若對金屬化學機械研磨中的機械參數進行調變,則會有以下結果︰

    1. 壓力增加對反應無大改變,主要是因為反應已經達成動態平衡了。

    2. 反應速率隨著轉速增加而增加,代表轉速使整體擴散速率提升,進而加速反應速率。

    3. 添加劑濃度也會反應在抑制效率上,但在研磨時濃度影響就會變得較不明顯。


    Abstract
    Chemical mechanical polishing (CMP) has long been recognized as a viable technique for global planarization to delineate metal patterns for sub-micron integrated circuit (IC) processing. Copper (Cu) has been used as multilevel interconnects and have emerged as the most important material for such applications. But, unlike Al, Ti, Ta and W, the oxides layer of Cu can be porous or not stable on the copper surface and can easily dissolute from the surface.

    In this study, in-situ electrochemical measurements were used to investigate the influences of nitric acid concentrations and additives on the copper corrosion mechanism.

    1.There formed electrochemical double layer (EDL) and unstable oxide passivation while copper immunity in 3% nitric acid slurry. The EDL becomes dense and oxide polished in abrasion.

    2.In adding of citric acid, it inhibits the reduction of NO3- and reduces total reaction rate, but main reaction mechanisms are still the same as that in 3% nitric acid slurry. In abrasion, the inhibit effects becomes slightly because citric acid becomes hard to diffuse into the interface between polishing pad and metal surface and inhibits cathode reactions and unstable oxide is polished.

    3.In adding of BTA, Cu+ will complex with BTA and formed a stable Cu-BTA film that inhibits the dissolution reaction rates. In abrasion, the effect of BTA also becomes slightly because Cu-BTA will be polished and formed another kind of dynamic equilibrium and thinner Cu-BTA film.

    In changing of mechanism conditions in CMP:

    1.Because all reactions achieve to dynamic equilibrium in abrasion, and the influence of changing pressure conditions seems slightly.

    2.In different rotation rates the impedance decreases as the sequence of rotation rate increases.

    3.In different additive concentrations, it shows inhibit effective increases with the additives concentrations increase without abrasion, but it seems slightly in abrasion

    Content 摘要 Abstract Acknowledgements Content…………………………………………………………………..i Figure captions…………………………………………………………iv Table captions………………………………………………………….viii Chapter 1 Introduction………………………………...……………..1 1.1 Planarization in IC manufacture………………………………1 1.2 Electrochemical measurements to investigate metal CMP…....4 1.3 Motivation………………………………………………….....5 Chapter 2 Fundamental Concepts………………………………..….8 2.1 Chemical Mechanical Planarization……………………….….8 2.1.1 Chemical Mechanical Planarization Process……...…….8 2.1.2 Chemical reactions of CMP……………………...……10 2.1.3 Chemical Mechanical Planarization Issue………..……14 2.2 Physical properties of copper……………………………..…15 2.2.1 Copper corrosion………………………………………16 2.2.2 Protection of copper…………………………………...17 2.2.3 Copper Chemical Mechanical Planarization………..…18 2.2.4 Copper CMP issue…………………………………..…19 2.3 Electrochemical thesis…………………………………….…21 2.3.1 Mixed-Potential Theory……………………………….21 2.3.2 Electrochemical Impedance Spectroscopy…………….27 Chapter 3 Experimental……………………………………………….41 3.1 Electrochemical instrument…………………….……………41 3.2 Chemicals prepare……………………………...……………41 3.3 DC measurements……………………………….…………...43 3.4 AC measurements……………………………….…………...44 Chapter 4 DC measurements…………………………….……………46 4.1 The potentiodynamic curves of copper in nitric acid base slurry……………………………………………..…….……46 4.2 Nitric acid with abrasion and without abrasion……...………48 4.3 Addotion of inhibitor…………………………………...……48 4.4 Addition of complex agent……………………………..……49 Chapter 5 EIS measurement technologies……………………....……54 5.1 Nyquist plots of copper in nitric acid system…………..……54 5.2 Simulation of Electrochemical Impedance Spectroscopy…...59 5.2.1 Nitric Acid System…………………………………….59 5.2.2 Nitric acid with Citric acid…………………………….63 5.2.3 Nitric acid with BTA…………………………………..67 5.2.4 Comparison of influences of additives………………...71 5.3 Chemical and Mechanical Effects………………………...…74 5.3.1 Pressure effect…………………………………………74 5.3.2 Rotation rate effect………………………………….…75 5.3.3 Concentration effect…………………………………...75 5.3.4 Discussion……………………………………………..76 5.4 Summary……………………………………………………..84 5.4.1 General conclusion of the nitric acid system……….…84 5.4.2 The potentiodynamic curves of copper in the nitric acid system………………………………………………...84 5.4.3 Electrochemical impedance spectroscopy (EIS) plots of copper in the nitric acid system………………………85 5.4.4 Comparison of various abrasion pressures and rotation rates…………………………………………………..85 5.5 Auger Electron Spectroscopy Measurements (AES) …….…88 Chapter 6 Conclusions and Future work………………………….…91 References……………………………………………………………....93 Figure Caption Figure 1.1 Degree of Surface Planarization………………….………..3 Figure 1.2 Comparison of planarization distance for various planarization technologies………………………...………3 Figure 2.1 A multilevel interconnect structure which using CMP technology………………………………………………...9 Figure 2.2 Schematic Diagram of Chemical Mechanical Planarization Polisher…………………………………………………..10 Figure 2.3 The schematic of CMP configuration………..…………..10 Figure 2.4 Wafer surface topography and Polishing Pad deformation During CMP Process…………….………………………11 Figure 2.5 Proposed mechanism of planarization of patterned metal feature by CMP………………………………………….11 Figure 2.6 The balance between the rate of polishing and the rate of passivation formation…………………………………...12 Figure 2.7 Pourbaix diagram of copper-water system……………..13 Figure 2.8 Domains of corrosion, immunity and passivation of copper………………………………………….………...13 Figure 2.9 Comparison of intrinsic gate delay and interconnect delay (RC) as a function of feature size……………………….16 Figure 2.10 Metal dishing and oxide erosion after multi-step CMP process…………………………………………………..20 Figure 2.11 Polarization of anodic and cathodic half-cell reactions for copper in acid solution to give a mixed potential, Ecorr., and a corrosion rate (current density), icorr………………….26 Figure 2.12 Determination of the mixed potential Ecorr. for a corroding metal M exposed to acid solution with a second oxidizer, Fe3+/Fe2+, present………………………………………...26 Figure 2.13 Combined polarization: sum of activation, hact, and concentration, hconc, polarization………………………..27 Figure 2.14 Cyclic nature of AC voltage……………………………30 Figure 2.15 Electrical behavior of an electric double layer………..30 Figure 2.16 AC voltage-current phase angle……………………….31 Figure 2.17 Vector nature of voltage and current…………………..31 Figure 2.18 Electrical double layer for an uncoated, oxide-free corroding metal………………………………………….34 Figure 2.19 Electrified interface structure for a corroding, coated metal...34 Figure 2.20 Single time constant complex plane plot………..……….37 Figure 2.21 Single time constant Bode magnitude plot……..………37 Figure 2.22 Single time constant Bode phase plot……………….….38 Figure 3.1 Schematic of the in-situ electrochemical measurement system…………………………………………………...42 Figure 4.1 The polarization curves for 3 % nitric acid with BTA and citric acid in non-abrasion………………………………50 Figure 4.2 The polarization curves of nitric acid system within additives in abrasion……………………………………50 Figure 4.3 The typical polarization curves for the abraded and non-abraded copper surface in nitric acid base slurry….51 Figure 4.4 The polarization curves at various BTA concentrations in nitric acid slurry. ( non-abrasion )………………………51 Figure 4.5 The polarization curves at various BTA concentrations in nitric acid slurry. (abrasion)……………………………..52 Figure 4.6 The polarization curves at various citric acid concentrations in nitric acid slurry. ( non-abrasion )……………………52 Figure 4.7 The polarization curves at various citric acid concentrations in nitric acid slurry. (abrasion)…………………………..53 Figure 5.1 The Nyquist plots for non-abraded Cu in 3% nitric acid aqueous solution…………………………………………56 Figure 5.2 The Nyquist plots in nitric acid system indicate two impedance semicircles dropped down and compressed in abrasion……………………………………………….…56 Figure 5.3 It shows slightly flatten and similar shape of two semicircles in Nyquist plots with the addition of complex agent in non-abrasion……………………………………57 Figure 5.4 It shows two similar semicircles separate clearly in Nyquist plots with the addition of complex agent in abrasion…...57 Figure 5.5 In Nyquist plots, a depressed and much larger semicircle is shown while adds inhibitor into electrolyte in non-abrasion……………………………………………58 Figure 5.6 In abrasion, a depressed semicircle with decreasing of impedance is smaller than that in non-abrasion and keeps the same shape………………………………………….58 Figure 5.7 Electrochemical reaction mechanisms of nitric acid system…………………………………………………...61 Figure 5.8 Equivalent circuit of nitric acid system…..………………61 Figure 5.9 Fitting of nitric acid system (non-abrasion)…..………….62 Figure 5.10 Fitting of nitric acid system (abrasion)…………………..62 Figure 5.11 Comparison of fitting impedance size of nitric acid only system…………………………………………………...63 Figure 5.12 Electrochemical reaction mechanisms of nitric acid system within citric acid………………………………………...65 Figure 5.13 Equivalent circuit of citric acid in nitric acid system…….65 Figure 5.14 Fitting of nitric acid system with adding citric acid (non-abrasion)…………………………………………...66 Figure 5.15 Fitting of nitric acid system with adding citric acid (abrasion)………………………………………………..66 Figure 5.16 Comparison of fitting impedance size of citric-nitric acid system…………………………………………………...67 Figure 5.17 Electrochemical reaction mechanisms of nitric acid system within BTA……………………………………………...69 Figure 5.18 Equivalent circuit of BTA in nitric acid system………….69 Figure 5.19 Fitting of nitric acid system within adding BTA (non-abrasion)…………………………………………...70 Figure 5.20 Fitting of nitric acid system within adding BTA (abrasion)………………………………………………..70 Figure 5.21 Comparison of fitting impedance size of BTA-nitric acid system…………………………………………………...71 Figure 5.22 The impedance plots of two semicircles seen lessened while the polishing pressure increased in nitric acid system…..78 Figure 5.23 In the presence of BTA, the impedance of copper without abrasion is higher than that in abrasion…………………78 Figure 5.24 In the presence of citric acid, the impedance of copper without abrasion is higher than that in abrasion………...79 Figure 5.25 The impedance plots reduce while rotation rate rises……79 Figure 5.26 The impedance plots diminish while rotation rate rises and keeps its style in abrasion situation……………………..80 Figure 5.27 Two impedance semicircles decrease with rotation rate rise and keep their shapes in abrasion……………………….80 Figure 5.28 The impedance of semicircle decreased while concentration in nitric acid increased…………………………..……….81 Figure 5.29 The two impedance semicircles decreased in abrasion…..81 Figure 5.30 Different complex concentrations only influent the whole impedance which represent…………………………….82 Figure 5.31 Different complex concentrations only influent slightly in the impedance represent…………………………………82 Figure 5.32 Concentration differences reflect to Nyquist plot in adding BTA and no abrasion situation…………………………83 Figure 5.33 Affects of BTA concentration seem slightly in abrasion...83 Figure 5.34 The electrochemical impedance spectroscopy (EIS) plots of copper in various nitric acid systems……………………86 Figure 5.35 The impedance plots of copper in abrasion in various nitric acid systems…………………………………………..87 Figure 5.36 Comparison of fitting impedance size of citric-nitric acid and nitric acid only system……………………………...87 Figure 5.37 Comparison of fitting impedance size of BTA-nitric acid and nitric acid only system……………………………...88 Figure 5.38 Auger Electron Spectroscopy (AES) survey spectra determining elements that present on the copper surface after exposure to the nitric acid based slurry……………90 Table Caption Table 1.1 Processes and features of kinds of planarization methods.....2 Table 1.2 Various planarity on surface topography could be obtained by some planarization methods……………………………….4 Table 3.1 Chemical represents of experimental slurries……………...42 Table 3.2 Electrochemical set-up and mechanical factors in experiment……………………………………………..….45 Table 5.1 Capacitance and Resistance value of above Equivalent……61 Table 5.2 Capacitance and Resistance value of above Equivalent……65 Table 5.3 Capacitance and Resistance value of above Equivalent……69

    Reference
    1. V. Comello, Semiconductor International, 1990, No.13, p.60.
    2. 半導體平坦化CMP技術,王建榮 等編譯,全華科技圖書公司,1-8頁。
    3. M.E. Thomas, S. Sekigahama, P. Renteln and J.M. Pierce, Proc. Of IEEE-VMIC, 990, p.438.
    4. Srinivasan Sivaram, Hubert Bath, Robert Leggett, Alvro Maury, Kenneth Monnig Robert Tolles, Solid State Technology, 35, 1992, pp.87-91.
    5. Michael A. Martinez, Solid State Technology, May 1994, pp.20-31.
    6. J.M. Steigerwald, S.P. Murarka, and R.J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, 1997.
    7. Inki Kim, et. Al., “Planarizing interlevel dielectrics by chemical mechanical polishing”, Solid State Technology, pp. 87-91, May 1992.
    8. A. Braun, Semiconductor International., 22, 58 (August 1999).
    9. A. Braun, Semiconductor International., 22, 54 (December 1999).
    10. F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-Mechanical Polishing for Fabricating Patterned W Metsalk Features as Chip Interconnects”, J. Electrochem. Soc., 138, 3460 (1991).
    11. J. M. Steigerwald, A Fundamental Study of Chemical Mechanical Polishing of Copper Thin Films, Ph.D. Dissertation, Rensselaer Polytechnic Institute, (May 1995).
    12. C. A. Sainio, Electrochemical Characterization of Bulk and Thin Film Copper in Ammonia- and Acid-Based Slurries for Chemical Mechanical Planarization of Interconnects, Ph.D. Dissertation, Rensselaer Polytechnic Institute (March 1998).
    13. P.H. Singer, Semiconductor International, March, 1992, p44.
    14. R. Iscoff, Semiconductor International, May, 1993, p72.
    15. S. Thomas and H.M. Berg, Trans. IEEE Compon., Hybr., Manuf. Technol., CHMT-10, 252 (1987).
    16. J.M. Steigerwald, R. Zirpoli, S.P. Murarka, D. Price, and R.J. Gutmann, J. Electrochem. Soc., Vol. 141, No. 12, 2842 (1994).
    17. M. Pourbaix, Atlas of electrochemical Equilibria in Aqueous Solutions, NACE, Houston, TX, 1974.
    18. Qiuliang Luo, Chemical Mechanical Polishing of Thin Copper Films, Department of Chemical Engineering, Clarkson University, U.S., July 1997.
    19. Howard Landis, Peter Burke, William Hill, Cheryl Hoffman, Carter Kaanta, Charles Koburger, Water Lange, Micheal and Stephen Luce, Thin Solid Films, 1992, No.220, pp1-7.
    20. Rahul Jairath, Janos Farkas, C.K. Huang, Matt Stell and Sing-Mo Tzeng, Solid State Technology, July 1994, pp.71-75.
    21. J.M. Steigerwald, S.P. Murarka, D.J. Duquette and R.J. Gutmann, in S. Murarka, A. Katz, K.N. Tu and K. Maex(eds.), Proc. Mater. Res. Soc., San Franciso, CA, USA, Apr. 4-8, 1994, p133.
    22. L. M. Cook, J.F. Wang, D.B. James, and A.R. Sethuraamn, Semiconductor International, November, 1995, p141.
    23. Iqbal Ali et al, “Chemical-Polishing of Interlayer Dielectric”, Solid State Technology, pp. 63-70, Oct. 1994.
    24. F.B. Kaufman, , J. Electrochem. Soc. Vol. 138, No. 11, Nov. 1991.
    25. Private communication, Westech Systems.
    26. P.L. Pai and C.H. Ting, IEEE Electron. Devices Lett., 1989, Vol.10, pp.423-425.
    27. Yosi Shacham-Diamand, Valery Dubin and Mathew Angyal, Thin Solid Films, 1995, No.262, pp93-103.
    28. C.K.Hu, B. Luther, F.B. Kaufman, J. Hummel, C. Uzoh and D.J. Pearson, Thin Solid Films, 1995, No.262, pp.84-92.
    29. S. Lakshminarayanan, J. Steigerwald, D.T. Price, M. Bourgeois, T.P. Chow, R.J. Gutmann and S.P. Murarka, IEEE Electronic Device Letters, August 1994, Vol.15, pp.307-309.
    30. Leidheiser, Henry Jr., The Corrosion of Copper, Tin and Their Alloys, Wiley & Sons, Inc., 1971.
    31. Mars G. Fontana and Roger W. Staehle, Advances in Corrosion Since and Technology, Vol.1, Plenum Press, 1970, pp.147-218.
    32. Y. Ling, Y. Guan and K.N. Han, Corrosion, 1995, vol.51, No.5, pp.367-375.
    33. E.M. Al-Kharael, E.H. Al-Hajjar and A. Katrib, Corros. Sci, 1990, Vol.30, No.8/9, pp.869-875.
    34. R. Walker, Corrosion, 1975, Vol.31, No.3, pp.97-100.
    35. Florian Mansfeld and Tennyson Smith, Corrosion, 1973, Vol.29, No.3, pp.105-107.
    36. R. Walker, Corrosion, 1976, Vol.32, No.10, pp.414-417.
    37. T. Notoya and G.W. Poling, Corrosion, 1979, Vol.35, No.5, pp.193-200.
    38. R. Walker, Corrosion, 1973, Vol.29, No.7, pp.290-296.
    39. V. Brusic, M.A. Frisch, B.N. Eldridge, F.P. Novak, F.B. Kaufman, B.M. Rush and G.S. Frankel, J. Electrochem. Soc., 1991, Vol.138, No.8, pp.2253-2259.
    40. Y.C. Wu, P. Zhang, H.W. Pickering and D.L. Allara, J Electrochem. Soc., 1993, Vol.140, No.10, pp.2791-2800.
    41. Kunitsugu Aramaki, Takehiro Kiuchi, Takashi Sumiyoshi and Hiroshi Nishihara, Corros. Sci., 1991, Vol.32, No5/6, pp.593-607.
    42. A.D. Modestov, G.D. Zhou, Y.P. Wu, T. Notoya and D.P. Schweinsberg, Corros. Sci., 1994, vol.36, No.11, pp.1931-1946.
    43. J. O. Nilsson, C. Tornkvist and B. Liedberg, Applied Surface Science, 1989, Vol.37, pp.306-326.
    44. T. Hashemi and C. A. Hogarth, Electrochimica Acta, 1988, Vol.33, No.8, pp.1123-1127.
    45. S. L. Cohen, V. A. Brusic, F. B. Kaufman, G. S. Frankel, S. Motakef and B. Rush, J. Vac. Sci. Technol., A, 1990, Vol.8, No.3, pp.2417-2424.
    46. D. Thierry and C. Leygraf, J.Electrochem. Soc., 1986, Vol.133, No.11, pp.2236-2239.
    47. H.C. Shih and R.J. Tzou, “Effect of Benzotriazole on the Stress Corrosion Cracking and the Electrochemical Polarization of 70/30 Brass in Fluoride Solution”, J. Electrochem. Soc., Vol. 138, No. 4, pp. 958-961 (1991)
    48. S. Gonzalez, M.M Laz, R.M. Souto, R.C. salvarezza and A.J. Arvia, Corrosion, 1993, Vol.49, No.6, pp.450-456.
    49. Ronald Carpio, Janos Farjas, Rahul Jairath, Initial study on copper CMP slurry chemistries, Thin solid films, 1995, No.266, pp.238-244.
    50. J.M. Steigerwald, S.P. Murerka, R.J. Gutmann, and D.J. Duquette, Mater. Chem. Phy. 41, 217 (1995)
    51. H. Hirabayashi M.Higuchi M.Kinoshita,H. Kaneko, N.Hagasaka, K.Mase and J. Oshima, Proceedings of the 1st International VMTC Specialty Conference on CMP Planarization, p.119, Santa Clara, CA, February 1996.
    52. J.M. Carr et at., US Patent 4,954,142, September 4, 1990.
    53. A Nenadic et al., US patent 5,084,071, January 28, 1992.
    54. C. C. Yu et al., US patent 5,354,490, October 11, 1994.
    55. J.M. Steigenval& S.P. Murarka, RJ. Gutmann and D.J. Duquette, J. Electrochem. Soc., 1994, Vol 141, No.12, pp.3512-3516.
    56. J.M. Steigerwald, DJ. Duquette, S.P. Murarka and RJ. Gutmann, J. Electrochem. Soc., 1995, Vo1.142, No.7, pp.2379-2385.
    57. J.M. Steigerwald, S.P.Murarka, J.Ho, RJ.Gutmann and D.J.Duquette, J. Vac. Sci. Technol., 1995, 13B, 2215.
    58. Z. Stavreva, D. Zeidler, M. Plotner and K. Drescher. Appl. Surf. Sci., 91, 192 (1995)
    59. Q. Luo, S. Ramarajan and S.V. Babu, Thin Solid Films, 335, 160 (1998)
    60. C.K.Hu, B. Luther, F.B. Kaufman, J. Hummel, C. Uzoh and D.J. Pearson, Thin Solid Films, 1995, No.262, pp.84-92.
    61. S.C. Chung, The Electrochemical Mechanism Studies on the Initial Stages of the Zinc Atmospheric Corrosion, Department of Material Science and Engineering, National Tsing Hua University, Taiwan, July 1999.
    62. D. A. Jones, Principles and Prevention of Corrosion, pp. 86-92, Macmillan, New Jersey (1991).
    63. M. G. Fontana, Corrosion Engineering, 3rd ed., pp. 458-468, McGraw-Hill, New York (1988).
    64. H. H. Uhlig and R. W. Revie, Corrosion and Corrosion Control, 3rd ed., pp. 35-53, John Wiley & Sons, New York (1985).
    65. A. J. Bard and L. R. Faulkner, Electrochemical Methods, pp. 347-353, John Wiley & Sons, New York (1980).
    66. J. R. Macdonald, Impedance Spectroscopy, pp.13-132, John Wiley & Sons, New York (1987).
    67. W. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, pp. 79-93, Pair O Docs, Wisconsin (1994).
    68. J.W. Hsu, S.Y. Chiu, I.C. Tung, Y.L. Wang, B.T. Dai, M.S. Tsai, M.S. Feng and H.C. Shih, ME-WeP7, 2nd ICAMPM in Santa Clara, CA, Feb. 7-11 (2000).
    69. M. Stern, and A.L. Geary, J. Electrochem. Soc., 1957, vol. 104, p56.
    70. Michael Stelter, Rudo lf Holze and Carl Heinz Hamann, Irreversible thermodynamics and electrochemical metal dissolution: Distribution of overpotentials in case of copper, Bulletin of Electrochemistry, 14(3) March 1998, pp.132-135.
    71. G.Lewis, The Adsorption of Benzotriazole onto Cuprous Oxide Surface: An Electrode Impedance Study, Corrosion-Nace, Vol.34, No.12, December, 1978, pp.424-428.
    72. S. Magaino, Corrosion rate of copper rotating-disk-electrode in simulated acid rain, Electrochemical Acta, Vol.42, No.3, 1997, pp.377-382.
    73. E. Guilminot, J-J. Rameau, F. Dalard, C. Degrigny and X. Hiron, Benzotriazole as inhibitor for copper with and without corrosion products in aqueous polyethylene, J. Applied Electrochemistry No.30, 21-28, 2000
    74. O. E. Barcia, O. R. Mattos, N. Pebere, and B. Tribollet, Mass-Transport Study for the Electrodissolution of copper in 1 M Hydrochloric Acid Solution by Impedance, J. Electrochem. Soc., Vol. 140, No. 10, October 1993.
    75. Danny K.Y. Wong, Bruce A. W. Coller and Douglas R. Macfarlance, A Kinetic Model for The Dissolution Mechanism of Copper in Acidic Sulfate Solutions, Electrochimica Acta, Vol.38, No.14, pp.2121-2127, 1993.
    76. Rahela Gasparac, Charles R. Martin, Ema Stupnisek-Lisac, and Zoran Mandic, In Situ Ex Situ Studies of Imidazole and Its Derivatives as Copper Corrosion Inhibitors, J. Electrochem. Soc., Vol 147, No.3, 2000, pp.991-998.
    77. R. Babic, M. Metikos-Hukovic, M. Loncar, Impedance and photoelectrochemical study of surface layers on Cu and Cu-10Ni in acetate solution containing benzotriazole, Electrochimica Acta, Vol.44, 1999, pp.2413-2421.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE