研究生: |
蔡依良 Yi-Liang Tsai |
---|---|
論文名稱: |
銅金屬在化學機械平坦化製程研漿中電化學行為之研究 A Study of Electrochemical behavior of Copper in Chemical Mechanical Planarization Slurry |
指導教授: |
施漢章
Han-C Shih |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | 銅製程 、化學機械平坦化 、交流組抗 、硝酸 、BTA 、檸檬酸 、電化學 |
外文關鍵詞: | copper metallization, CMP, AC Impedance, nitric acid, BTA, Citric acid, Electrochemical |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
在現今IC製程朝向體積減少以及速度更快的前提下,銅製程以及化學機械平坦化(CMP)的運用已變得不可或缺。銅在金屬化學機械平坦化中的化學反應特性與其他金屬如︰鈦,鋁,鎢及鉭不同,銅不會在金屬表面形成一層穩定的氧化物,取而代之的是一種偏向溶解的反應,也因此難以控制金屬化學機械平坦化的研磨速率以及造成淺盤凹陷(dishing)的效應。
在本實驗中,藉由即時電化學的量測,我們可以得到完整的直流極化曲線及交流阻抗曲線,再藉由合理的假設及等效電路的模擬,就能清楚的了解銅在硝酸系統及其添加劑中的電化學反應:
1. 銅在硝酸溶液中形成電雙層結構(EDL)及不穩定的表面氧化物,研磨時電雙層被壓縮且氧化物層被磨除。
2. 在硝酸溶液中添加檸檬酸(Citric acid),則抑制了陰極反應,造成整體反應變慢,但主要反應機制與銅在硝酸溶液中相同;研磨時不穩定的表面氧化物被拋去,加上檸檬酸很難擴散到研磨墊與金屬中抑制陰極反應,使抑制效果變得輕微。
3. 在硝酸溶液中添加抑制劑(1H-BTA),則BTA會與Cu+在銅表面形成穩定且緻密的Cu-BTA結構,因此大幅的抑制了表面反應進而減緩整體的反應速率。研磨時Cu-BTA層會被拋去,但仍會形成動態的Cu-BTA層且對減緩反應速率有一些效果。
若對金屬化學機械研磨中的機械參數進行調變,則會有以下結果︰
1. 壓力增加對反應無大改變,主要是因為反應已經達成動態平衡了。
2. 反應速率隨著轉速增加而增加,代表轉速使整體擴散速率提升,進而加速反應速率。
3. 添加劑濃度也會反應在抑制效率上,但在研磨時濃度影響就會變得較不明顯。
Abstract
Chemical mechanical polishing (CMP) has long been recognized as a viable technique for global planarization to delineate metal patterns for sub-micron integrated circuit (IC) processing. Copper (Cu) has been used as multilevel interconnects and have emerged as the most important material for such applications. But, unlike Al, Ti, Ta and W, the oxides layer of Cu can be porous or not stable on the copper surface and can easily dissolute from the surface.
In this study, in-situ electrochemical measurements were used to investigate the influences of nitric acid concentrations and additives on the copper corrosion mechanism.
1.There formed electrochemical double layer (EDL) and unstable oxide passivation while copper immunity in 3% nitric acid slurry. The EDL becomes dense and oxide polished in abrasion.
2.In adding of citric acid, it inhibits the reduction of NO3- and reduces total reaction rate, but main reaction mechanisms are still the same as that in 3% nitric acid slurry. In abrasion, the inhibit effects becomes slightly because citric acid becomes hard to diffuse into the interface between polishing pad and metal surface and inhibits cathode reactions and unstable oxide is polished.
3.In adding of BTA, Cu+ will complex with BTA and formed a stable Cu-BTA film that inhibits the dissolution reaction rates. In abrasion, the effect of BTA also becomes slightly because Cu-BTA will be polished and formed another kind of dynamic equilibrium and thinner Cu-BTA film.
In changing of mechanism conditions in CMP:
1.Because all reactions achieve to dynamic equilibrium in abrasion, and the influence of changing pressure conditions seems slightly.
2.In different rotation rates the impedance decreases as the sequence of rotation rate increases.
3.In different additive concentrations, it shows inhibit effective increases with the additives concentrations increase without abrasion, but it seems slightly in abrasion
Reference
1. V. Comello, Semiconductor International, 1990, No.13, p.60.
2. 半導體平坦化CMP技術,王建榮 等編譯,全華科技圖書公司,1-8頁。
3. M.E. Thomas, S. Sekigahama, P. Renteln and J.M. Pierce, Proc. Of IEEE-VMIC, 990, p.438.
4. Srinivasan Sivaram, Hubert Bath, Robert Leggett, Alvro Maury, Kenneth Monnig Robert Tolles, Solid State Technology, 35, 1992, pp.87-91.
5. Michael A. Martinez, Solid State Technology, May 1994, pp.20-31.
6. J.M. Steigerwald, S.P. Murarka, and R.J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, 1997.
7. Inki Kim, et. Al., “Planarizing interlevel dielectrics by chemical mechanical polishing”, Solid State Technology, pp. 87-91, May 1992.
8. A. Braun, Semiconductor International., 22, 58 (August 1999).
9. A. Braun, Semiconductor International., 22, 54 (December 1999).
10. F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson, and M. B. Small, “Chemical-Mechanical Polishing for Fabricating Patterned W Metsalk Features as Chip Interconnects”, J. Electrochem. Soc., 138, 3460 (1991).
11. J. M. Steigerwald, A Fundamental Study of Chemical Mechanical Polishing of Copper Thin Films, Ph.D. Dissertation, Rensselaer Polytechnic Institute, (May 1995).
12. C. A. Sainio, Electrochemical Characterization of Bulk and Thin Film Copper in Ammonia- and Acid-Based Slurries for Chemical Mechanical Planarization of Interconnects, Ph.D. Dissertation, Rensselaer Polytechnic Institute (March 1998).
13. P.H. Singer, Semiconductor International, March, 1992, p44.
14. R. Iscoff, Semiconductor International, May, 1993, p72.
15. S. Thomas and H.M. Berg, Trans. IEEE Compon., Hybr., Manuf. Technol., CHMT-10, 252 (1987).
16. J.M. Steigerwald, R. Zirpoli, S.P. Murarka, D. Price, and R.J. Gutmann, J. Electrochem. Soc., Vol. 141, No. 12, 2842 (1994).
17. M. Pourbaix, Atlas of electrochemical Equilibria in Aqueous Solutions, NACE, Houston, TX, 1974.
18. Qiuliang Luo, Chemical Mechanical Polishing of Thin Copper Films, Department of Chemical Engineering, Clarkson University, U.S., July 1997.
19. Howard Landis, Peter Burke, William Hill, Cheryl Hoffman, Carter Kaanta, Charles Koburger, Water Lange, Micheal and Stephen Luce, Thin Solid Films, 1992, No.220, pp1-7.
20. Rahul Jairath, Janos Farkas, C.K. Huang, Matt Stell and Sing-Mo Tzeng, Solid State Technology, July 1994, pp.71-75.
21. J.M. Steigerwald, S.P. Murarka, D.J. Duquette and R.J. Gutmann, in S. Murarka, A. Katz, K.N. Tu and K. Maex(eds.), Proc. Mater. Res. Soc., San Franciso, CA, USA, Apr. 4-8, 1994, p133.
22. L. M. Cook, J.F. Wang, D.B. James, and A.R. Sethuraamn, Semiconductor International, November, 1995, p141.
23. Iqbal Ali et al, “Chemical-Polishing of Interlayer Dielectric”, Solid State Technology, pp. 63-70, Oct. 1994.
24. F.B. Kaufman, , J. Electrochem. Soc. Vol. 138, No. 11, Nov. 1991.
25. Private communication, Westech Systems.
26. P.L. Pai and C.H. Ting, IEEE Electron. Devices Lett., 1989, Vol.10, pp.423-425.
27. Yosi Shacham-Diamand, Valery Dubin and Mathew Angyal, Thin Solid Films, 1995, No.262, pp93-103.
28. C.K.Hu, B. Luther, F.B. Kaufman, J. Hummel, C. Uzoh and D.J. Pearson, Thin Solid Films, 1995, No.262, pp.84-92.
29. S. Lakshminarayanan, J. Steigerwald, D.T. Price, M. Bourgeois, T.P. Chow, R.J. Gutmann and S.P. Murarka, IEEE Electronic Device Letters, August 1994, Vol.15, pp.307-309.
30. Leidheiser, Henry Jr., The Corrosion of Copper, Tin and Their Alloys, Wiley & Sons, Inc., 1971.
31. Mars G. Fontana and Roger W. Staehle, Advances in Corrosion Since and Technology, Vol.1, Plenum Press, 1970, pp.147-218.
32. Y. Ling, Y. Guan and K.N. Han, Corrosion, 1995, vol.51, No.5, pp.367-375.
33. E.M. Al-Kharael, E.H. Al-Hajjar and A. Katrib, Corros. Sci, 1990, Vol.30, No.8/9, pp.869-875.
34. R. Walker, Corrosion, 1975, Vol.31, No.3, pp.97-100.
35. Florian Mansfeld and Tennyson Smith, Corrosion, 1973, Vol.29, No.3, pp.105-107.
36. R. Walker, Corrosion, 1976, Vol.32, No.10, pp.414-417.
37. T. Notoya and G.W. Poling, Corrosion, 1979, Vol.35, No.5, pp.193-200.
38. R. Walker, Corrosion, 1973, Vol.29, No.7, pp.290-296.
39. V. Brusic, M.A. Frisch, B.N. Eldridge, F.P. Novak, F.B. Kaufman, B.M. Rush and G.S. Frankel, J. Electrochem. Soc., 1991, Vol.138, No.8, pp.2253-2259.
40. Y.C. Wu, P. Zhang, H.W. Pickering and D.L. Allara, J Electrochem. Soc., 1993, Vol.140, No.10, pp.2791-2800.
41. Kunitsugu Aramaki, Takehiro Kiuchi, Takashi Sumiyoshi and Hiroshi Nishihara, Corros. Sci., 1991, Vol.32, No5/6, pp.593-607.
42. A.D. Modestov, G.D. Zhou, Y.P. Wu, T. Notoya and D.P. Schweinsberg, Corros. Sci., 1994, vol.36, No.11, pp.1931-1946.
43. J. O. Nilsson, C. Tornkvist and B. Liedberg, Applied Surface Science, 1989, Vol.37, pp.306-326.
44. T. Hashemi and C. A. Hogarth, Electrochimica Acta, 1988, Vol.33, No.8, pp.1123-1127.
45. S. L. Cohen, V. A. Brusic, F. B. Kaufman, G. S. Frankel, S. Motakef and B. Rush, J. Vac. Sci. Technol., A, 1990, Vol.8, No.3, pp.2417-2424.
46. D. Thierry and C. Leygraf, J.Electrochem. Soc., 1986, Vol.133, No.11, pp.2236-2239.
47. H.C. Shih and R.J. Tzou, “Effect of Benzotriazole on the Stress Corrosion Cracking and the Electrochemical Polarization of 70/30 Brass in Fluoride Solution”, J. Electrochem. Soc., Vol. 138, No. 4, pp. 958-961 (1991)
48. S. Gonzalez, M.M Laz, R.M. Souto, R.C. salvarezza and A.J. Arvia, Corrosion, 1993, Vol.49, No.6, pp.450-456.
49. Ronald Carpio, Janos Farjas, Rahul Jairath, Initial study on copper CMP slurry chemistries, Thin solid films, 1995, No.266, pp.238-244.
50. J.M. Steigerwald, S.P. Murerka, R.J. Gutmann, and D.J. Duquette, Mater. Chem. Phy. 41, 217 (1995)
51. H. Hirabayashi M.Higuchi M.Kinoshita,H. Kaneko, N.Hagasaka, K.Mase and J. Oshima, Proceedings of the 1st International VMTC Specialty Conference on CMP Planarization, p.119, Santa Clara, CA, February 1996.
52. J.M. Carr et at., US Patent 4,954,142, September 4, 1990.
53. A Nenadic et al., US patent 5,084,071, January 28, 1992.
54. C. C. Yu et al., US patent 5,354,490, October 11, 1994.
55. J.M. Steigenval& S.P. Murarka, RJ. Gutmann and D.J. Duquette, J. Electrochem. Soc., 1994, Vol 141, No.12, pp.3512-3516.
56. J.M. Steigerwald, DJ. Duquette, S.P. Murarka and RJ. Gutmann, J. Electrochem. Soc., 1995, Vo1.142, No.7, pp.2379-2385.
57. J.M. Steigerwald, S.P.Murarka, J.Ho, RJ.Gutmann and D.J.Duquette, J. Vac. Sci. Technol., 1995, 13B, 2215.
58. Z. Stavreva, D. Zeidler, M. Plotner and K. Drescher. Appl. Surf. Sci., 91, 192 (1995)
59. Q. Luo, S. Ramarajan and S.V. Babu, Thin Solid Films, 335, 160 (1998)
60. C.K.Hu, B. Luther, F.B. Kaufman, J. Hummel, C. Uzoh and D.J. Pearson, Thin Solid Films, 1995, No.262, pp.84-92.
61. S.C. Chung, The Electrochemical Mechanism Studies on the Initial Stages of the Zinc Atmospheric Corrosion, Department of Material Science and Engineering, National Tsing Hua University, Taiwan, July 1999.
62. D. A. Jones, Principles and Prevention of Corrosion, pp. 86-92, Macmillan, New Jersey (1991).
63. M. G. Fontana, Corrosion Engineering, 3rd ed., pp. 458-468, McGraw-Hill, New York (1988).
64. H. H. Uhlig and R. W. Revie, Corrosion and Corrosion Control, 3rd ed., pp. 35-53, John Wiley & Sons, New York (1985).
65. A. J. Bard and L. R. Faulkner, Electrochemical Methods, pp. 347-353, John Wiley & Sons, New York (1980).
66. J. R. Macdonald, Impedance Spectroscopy, pp.13-132, John Wiley & Sons, New York (1987).
67. W. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, pp. 79-93, Pair O Docs, Wisconsin (1994).
68. J.W. Hsu, S.Y. Chiu, I.C. Tung, Y.L. Wang, B.T. Dai, M.S. Tsai, M.S. Feng and H.C. Shih, ME-WeP7, 2nd ICAMPM in Santa Clara, CA, Feb. 7-11 (2000).
69. M. Stern, and A.L. Geary, J. Electrochem. Soc., 1957, vol. 104, p56.
70. Michael Stelter, Rudo lf Holze and Carl Heinz Hamann, Irreversible thermodynamics and electrochemical metal dissolution: Distribution of overpotentials in case of copper, Bulletin of Electrochemistry, 14(3) March 1998, pp.132-135.
71. G.Lewis, The Adsorption of Benzotriazole onto Cuprous Oxide Surface: An Electrode Impedance Study, Corrosion-Nace, Vol.34, No.12, December, 1978, pp.424-428.
72. S. Magaino, Corrosion rate of copper rotating-disk-electrode in simulated acid rain, Electrochemical Acta, Vol.42, No.3, 1997, pp.377-382.
73. E. Guilminot, J-J. Rameau, F. Dalard, C. Degrigny and X. Hiron, Benzotriazole as inhibitor for copper with and without corrosion products in aqueous polyethylene, J. Applied Electrochemistry No.30, 21-28, 2000
74. O. E. Barcia, O. R. Mattos, N. Pebere, and B. Tribollet, Mass-Transport Study for the Electrodissolution of copper in 1 M Hydrochloric Acid Solution by Impedance, J. Electrochem. Soc., Vol. 140, No. 10, October 1993.
75. Danny K.Y. Wong, Bruce A. W. Coller and Douglas R. Macfarlance, A Kinetic Model for The Dissolution Mechanism of Copper in Acidic Sulfate Solutions, Electrochimica Acta, Vol.38, No.14, pp.2121-2127, 1993.
76. Rahela Gasparac, Charles R. Martin, Ema Stupnisek-Lisac, and Zoran Mandic, In Situ Ex Situ Studies of Imidazole and Its Derivatives as Copper Corrosion Inhibitors, J. Electrochem. Soc., Vol 147, No.3, 2000, pp.991-998.
77. R. Babic, M. Metikos-Hukovic, M. Loncar, Impedance and photoelectrochemical study of surface layers on Cu and Cu-10Ni in acetate solution containing benzotriazole, Electrochimica Acta, Vol.44, 1999, pp.2413-2421.