簡易檢索 / 詳目顯示

研究生: 賴柏丞
Lai, Po-Chen
論文名稱: 利用掠角X光小角度散射法研究規則孔洞二氧化鈦薄膜結構
Grazing-Incident Small-Angle X-ray Scattering Studies on the Structure of Ordered Mesoporous Titanium Dioxide Film
指導教授: 林滄浪
Lin, Tsang-Lang
口試委員: 王本成
Wang, Pen-Cheng
陳燦耀
Chen, Tsan-Yao
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 多孔洞二氧化鈦軟模板掠角小角度散射溶膠凝膠
外文關鍵詞: mesoporous, TiO2, soft-template, sol-gel, GISAXS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來多孔洞二氧化鈦材料陸續都有人們成功的合成出來,且在各領域也有長足的應用,但是規則的多孔洞二氧化鈦薄膜並不易製備。本研究以掠角小角度散射(GISAXS)分析不同的合成參數對於合成製備規則孔洞二氧化鈦薄膜材料之結構影響,在此使用溶膠凝膠法合成二氧化鈦材料並以高分子Pluronic P123為合成中所使用的軟模板,溶膠凝膠法裡水解與縮合速率扮演了結構改變非常重要的角色,透過使用蒸發誘導自組裝法(EISA method)使反應速率能與模板形成之速率做配合,達到不同結構,為此本研究改變了可以影響水解縮和反應的因素及條件如前驅物的種類、鹽酸濃度和溼度,而在模板方面也改變Pluronic P123濃度使其成型的速率與水解縮和反應做搭配。從實驗結果中也可以知到在Pluronic P123濃度為酒精溶劑10 wt%,且HCl/TTIP 莫耳比0.5的條件下能夠產生規則孔洞的二氧化鈦材料,形成之結構為平躺於矽基板表面的六方堆積結構(Hexagonal),六角形邊的長度(Unit cell constant) a值為11nm,隨著Pluronic P123濃度的增加結構漸偏向於層狀堆疊的狀態(d = 9.81 nm),此結果於Pluronic P123隨濃度增加之聚集結構變化相圖相似。在同一種模板溶液條件下改變施加的鹽酸量對於結構也會有很大的影響,濃度從高到低會形成的結構分別為球狀堆積成的柱狀結構(Cylinder)(d =14.61 nm )、柱狀體排列成的六方堆積(Hexagonal)(a = 11 nm)及最後一層層堆疊出的層狀結構(Lamella)(d = 9 ~11 nm),值得一提的是這裡的柱狀堆積結構是垂直於基板表面,而六方堆積中的柱狀體則是平躺在矽基板上的。在改變了前驅物Ti(OBu)4後,也可以看到相似的結果,但是在六方堆積的結構中也摻雜了一些層狀結構在其中,因為水解速率較慢的原因使得模板可以形成較高濃度的結構,在使用EISA方法的過程中控制實驗於室溫下相對濕度50%和30%進行,從發現在當Pluronic P123濃度在5 wt%時兩者沒有太大差異,10 wt%時相對濕度30%的Hexagonal結構中也出現混有一些層狀結構的現象,當Pluronic P123濃度提到20 wt%時可以發現低濕度條件下,形成之Lamella結構的時間早於濕度較高的實驗。


    In this study, the effect of the synthesis parameters on the structure of the porous titanium dioxide thin films were investigated by Grazing-Incident Small-Angle X-ray Scattering(GISAXS). Sol-gel method was employed in this study to synthesize the porous titanium dioxide thin films using the polymer Pluronic P123 as the soft template. The hydrolysis and condensation rate of the precursor used in the sol-gel method play very important roles in controlling the synthesized structure. It is necessary to control these rates to allow the formation of ordered template structure. It is often need to use the evaporation-induced self-assembly method (EISA method) to successfully synthesize ordered porous titanium dioxide thin films. The factors affecting the hydrolysis and condensation reaction, such as the type of precursors, the concentration of hydrochloric acid, the humidity, and the Pluronic P123 concentration, were varied in this study. At Pluronic P123 concentration 10 wt%, and HCl/TTIP molar ratio 0.5, it was found that the synthesized titanium dioxide thin film possess hexagonal stacking structure, lying parallel to the silicon substrate surface with a unit cell constant of 11 nm. At higher P123 concentrations or higher acid conditions, it was found that the hexagonal structure is replaced by the lamellar structure.
    These findings suggest that the synthesized structures follow closely with the phase diagram of P123.

    目錄 摘要 I 致謝 III Abstract IV 目錄 V 圖目錄 VII 第一章 緒論 1 1.1孔洞材料之發現與簡介 1 1.2中孔洞材料之合成 2 1.3.1太陽能電池及產氫之應用 4 1.3.2生醫方面之應用 5 1.4嵌段共聚物與其自組裝行為 6 1.4.1三嵌段共聚物Pluronic P123 8 1.5溶膠凝膠法合成多孔洞二氧化鈦 8 1.5.1蒸發誘導自組裝(Evaporation-Induced Self-Assembly) 9 1.6薄膜結構製備方法 11 第二章 文獻回顧 13 2.1中孔洞材料合成 13 2.2 不同濃度Pluronic P123對規則孔洞二氧化鈦材料之影響 16 2.3利用掠角小角度散射分析規則孔洞結構之薄膜 17 2.4研究動機 18 第三章 實驗 19 3.2實驗流程 20 3.2.1合成二氧化鈦溶膠溶液(Sol solution) 20 3.2.2以蒸發誘導自組裝法(EISA)合成規則孔洞薄膜材料 22 3.2.3高溫鍛燒去除軟模板 23 3.3實驗儀器及原理 25 3.3.1 X-ray掠角小角度散射(GISAXS) 25 3.3.2 GISAXS實驗操作步驟 26 第四章 結果與討論 28 4.1改變Pluronic P123濃度對結構之影響 28 4.2探討酸性溶液對結構的影響與變化 33 4.2.1在Pluronic P123濃度5 wt%下改變HCl/TTIP莫耳比對結構之影響 33 4.2.2在Pluronic P123濃度10 wt%下改變HCl/TTIP莫耳比對結構之影響 37 4.2.3在Pluronic P123濃度20 wt%下改變HCl/TTIP莫耳比對結構之影響 43 4.3改變二氧化鈦前驅物種類對結構之影響 47 4.3.1 Pluronic P123濃度5 wt%下Ti(OBu)4及TTIP對結構之影響與比較 47 4.3.2 Pluronic P123濃度10 wt%下Ti(OBu)4及TTIP對結構之影響與比較 51 4.3.3 Pluronic P123濃度20 wt%下Ti(OBu)4及TTIP對結構之影響與比較 55 4.4改變濕度對結構產生之影響 57 4.4.1 Pluronic P123濃度5 wt%下改變相對濕度對結構之影響 57 4.4.2 Pluronic P123濃度10 wt%下改變相對濕度對結構之影響 59 4.4.3 Pluronic P123濃度20 wt%下改變相對濕度對結構之影響 62 結論 64 參考文獻 66   圖目錄 圖1- 1二氧化矽中孔洞材料MCM-41合成示意圖4 2 圖1- 2二氧化鈦光觸媒之催化反應機制圖 3 圖1- 3二氧化鈦光觸媒裂解水產氫機制7 4 圖1- 4規則孔洞二氧化鈦摻雜白金產氫示意圖13 5 圖1- 5嵌段共聚物自組裝形成的結構19 7 圖1- 6嵌段共聚物Pluronic P123相圖 8 圖1- 7規則孔洞合成及蒸發誘導自組裝法之流程圖24 10 圖1- 8浸塗法示意圖24 11 圖1- 9旋轉塗佈法示意圖24 12 圖2- 1二氧化矽中孔洞材料合成示意圖4 13 圖2- 2軟模板及硬模板法合成流程圖25 14 圖2- 3規則中孔洞二氧化鈦材料合成19 15 圖2- 4以SAXS分析其六方堆積結構d-spacing變化29 16 圖2- 5 GISAXS分析圖形及其結構示意圖30 17 圖3- 1浸塗法滴加過程 22 圖3- 2旋轉塗佈法滴加過程 23 圖3- 3完整實驗流程圖 24 圖3- 4 GISAXS實驗散射及結構示意圖 25 圖4- 1 GISAXS實驗數據圖型,HCl/TTIP = 0.5且於室溫25 oC相對濕度50%下,Pluronic P123濃度(a) 5 wt% (b)、(c)10 wt% (d) 20 wt% 29 圖4- 2 Pluronic P123於水溶液中之相變化圖形 30 圖4- 3 Pluronic P123 10 wt% GISAXS散射訊號積分結果 31 圖4- 4 平躺於矽基板表面之Hexagonal 結構Unit cell constant位置示意圖 31 圖4- 5 Pluronic P123 20 wt% GISAXS散射訊號積分結果 32 圖4- 6 Lamella層狀結構其平面間距d-spacing示意圖 33 圖4- 7 GISAXS實驗數據圖型, Pluronic P123濃度為5 wt% 35 圖4- 8 Pluronic P123 5 wt%,HCl/TTIP = 0.25 其GISAXS散射訊號積分結果 36 圖4- 9 GISAXS實驗數據圖型, Pluronic P123濃度為10 wt% 38 圖4- 10 GISAXS實驗數據強度調整及比較 39 圖4- 11 Pluronic P123 10 wt%,HCl/TTIP = 0.25 其GISAXS散射訊號積分結果 39 圖4- 12 Pluronic P123 10 wt%,HCl/TTIP = 1 其GISAXS散射訊號積分結果 40 圖4- 13 Q值對散射強度之圖形,Pluronic P123 10 wt% 41 圖4- 14 GISAXS實驗數據圖型, Pluronic P123濃度為20 wt% 44 圖4- 15 Q值對散射強度之圖形,Pluronic P123 20 wt% 45 圖4- 16 Pluronic P123 5 wt%下改變前驅物種類對結構之影響及比較 48 圖4- 17 Pluronic P123 5 wt%,HCl/Ti(OBu)4 = 0.5 其GISAXS散射訊號積分結果 49 圖4- 18 Pluronic P123 5 wt%,HCl/Ti(OBu)4 = 2 其GISAXS散射訊號積分結果 49 圖4- 19 Pluronic P123 10 wt%下改變前驅物種類對結構之影響及比較 52 圖4- 20 GISAXS數據積分圖形Pluronic P123 10 wt% (a) HCl/ Ti(OBu)4 = 0.25 (b) HCl/ Ti(OBu)4 = 0.5 53 圖4- 21 GISAXS數據積分圖形Pluronic P123 10 wt% (a) HCl/ Ti(OBu)4 = 0.5 (b) HCl/ Ti(OBu)4 = 1 (c) HCl/ Ti(OBu)4 = 2 53 圖4- 22 Pluronic P123 10 wt%下改變前驅物種類對結構之影響及比較 56 圖4- 23 Pluronic P123 5 wt%,室溫下相對濕度30%和50%對結構之影響 GISAXS數據(a1) ~ (a6)為HCl/TTIP = 0.1 ~ 4之結構,相對濕度50% GISAXS數據(b1) ~ (b6)為HCl/TTIP = 0.1 ~ 4之結構,相對濕度30% 58 圖4- 24 GISAXS散射積分圖型 室溫下相對濕度30%,Pluronic P123 5 wt% HCl/TTIP = 0.25 59 圖4- 25 Pluronic P123 10 wt%,室溫下相對濕度30%和50%對結構之影響 GISAXS數據(a1) ~ (a6)為HCl/TTIP = 0.1 ~ 4之結構,相對濕度50% GISAXS數據(b1) ~ (b6)為HCl/TTIP = 0.1 ~ 4之結構,相對濕度30% 60 圖4- 26 Pluronic P123 20 wt%,室溫下相對濕度30%和50%對結構之影響 GISAXS數據(a1) ~ (a6)為HCl/TTIP = 0.1 ~ 4之結構,相對濕度50% GISAXS數據(b1) ~ (b6)為HCl/TTIP = 0.1 ~ 4之結構,相對濕度30% 63   表目錄 表2- 1隨P123/ Ti(OBu)4莫耳比提高其孔洞尺寸變化29 16 表4- 1 Pluronic P123 10 wt%之樣品定量分析數值 31 表4- 2 Pluronic P123 20 wt%之樣品定量分析數值 33 表4- 3 Pluronic P123 5 wt%,HCl/TTIP莫耳比0.5之樣品定量分析數值 36 表4- 4 Pluronic P123 10 wt%,HCl/TTIP莫耳比0.25之樣品定量分析數值 40 表4- 5 Pluronic P123 10 wt%,HCl/TTIP莫耳比1之樣品定量分析數值 41 表4- 6 Pluronic P123 10 wt%,HCl/TTIP莫耳比2之樣品定量分析數值 42 表4- 7 Pluronic P123 10 wt%,HCl/TTIP莫耳比4之樣品定量分析數值 42 表4- 8 Pluronic P123 10 wt%,TTIP系列結構與定量分析統整表 42 表4- 9 Pluronic P123 20 wt%,HCl/TTIP莫耳比0.5之樣品定量分析數值 45 表4- 10 Pluronic P123 20 wt%,HCl/TTIP莫耳比1之樣品定量分析數值 46 表4- 11 Pluronic P123 20 wt%,HCl/TTIP莫耳比2之樣品定量分析數值 46 表4- 12 Pluronic P123 20 wt%,HCl/TTIP莫耳比4之樣品定量分析數值 46 表4- 13 Pluronic P123 20 wt%之Lamella層狀結構其d-spacing比較表 46 表4- 14 Pluronic P123 5 wt% 前驅物Ti(OBu)4隨HCl濃度改變之結構比較 50 表4- 15 Pluronic P123 10 wt%下TTIP及Ti(OBu)4結構之定量分析比較表 51 表4- 16 Pluronic P123 10 wt%,Ti(OBu)4系列結構與定量分析統整表 54 表4- 17 Pluronic P123 10 wt%下TTIP及Ti(OBu)4結構之定量分析比較表 54 表4- 18 Pluronic P123 20 wt%下TTIP及Ti(OBu)4 Lamella結構之定量分析比較表 55 表4- 19 Pluronic P123 5 wt%,HCl/TTIP = 0.25之相對濕度30%和50%結構比較表 57 表4- 20 Pluronic P123 10 wt%,HCl/TTIP = 0.25之相對濕度30%和50%結構比較表 61 表4- 21 Pluronic P123 10 wt%,HCl/TTIP = 0.5之相對濕度30%和50%結構比較表 61 表4- 22 Pluronic P123 10 wt%,相對濕度30%和50% 之Lamella結構比較表 61 表4- 23 Pluronic P123 20 wt%,相對濕度30%和50% 之Lamella結構比較表 62

    1. Beck, J. S.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. 1992.
    2. Kresge, C. T.; Leonwicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Order mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992.
    3. Davis, M. E. Ordered porous materials for emerging applications. Nature 2002.
    4. Beck, J. S.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. AM. CHEM. SOC 1992.
    5. Crepaldi, E. L.; Soler-Illia, Galo J. de A. A.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, C. Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2. J. AM. CHEM. SOC. 2003.
    6. Liu, K.; Fu, H.; Shi, K.; Xiao, F.; Jing, L.; Xin, B. Preparation of Large-Pore Mesoporous Nanocrystalline TiO2 Thin Films with Tailored Pore Diameters. American Chemical Society 2005.
    7. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 2007, 11 (3), 401-425.
    8. Kamari, Y.; Ghiaci, M. Preparation and characterization of ibuprofen/modified chitosan/TiO 2 hybrid composite as a controlled drug-delivery system. Microporous and Mesoporous Materials 2016, 234, 361-369.
    9. Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano letters 2005, 5 (9), 1789-92.
    10. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells. American Chemical Society 2005.
    11. Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. Synthesis, characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol–gel process. Journal of Solid State Chemistry 2005, 178 (1), 329-338.
    12. Ichikawa, S.; Doi, R. Photoelectrocatalytic hydrogen production from water on transparent thin film titania of different crystal structures and quantum efficiency characteristics. Thin Solid Films 1997.
    13. Lakshminarasimhan, N.; Bae, E.; Choi, W. Enhanced Photocatalytic Production of H2 on Mesoporous TiO2 Prepared by Template-Free Method: Role of Interparticle Charge Transfer. J. Phys. Chem. C 2007.
    14. Ghedini, E.; Signoretto, M.; Pinna, F.; Crocellà, V.; Bertinetti, L.; Cerrato, G. Controlled release of metoprolol tartrate from nanoporous silica matrices. Microporous and Mesoporous Materials 2010, 132 (1-2), 258-267.
    15. Park, S. W.; Lee, D.; Choi, Y. S.; Jeon, H. B.; Lee, C. H.; Moon, J. H.; Kwon, Il K. Mesoporous TiO2 implants for loading high dosage of antibacterial agent. Applied Surface Science 2014, 303, 140-146.
    16. Signoretto, M.; Ghedini, E.; Nichele, V.; Pinna, F.; Crocellà, V.; Cerrato, G. Effect of textural properties on the drug delivery behaviour of nanoporous TiO2 matrices. Microporous and Mesoporous Materials 2011, 139 (1-3), 189-196.
    17. Song, Y. Y.; Stein, F. S.; Bauer, S.; Schmuki, P. Amphiphilic TiO2 Nanotube Arrays: An Actively Controllable Drug Delivery System. J. AM. CHEM. SOC 2009.
    18. Shrestha, N. K.; Macak, J. M.; Schmidt-Stein, F.; Hahn, R.; Mierke, C. T.; Fabry, B.; Schmuki, P. Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew Chem Int Ed Engl 2009, 48 (5), 969-72.
    19. Pan, J. H.; Zhao, X. S.; Lee, W. I. Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications. Chemical Engineering Journal 2011, 170 (2-3), 363-380.
    20. Yang, P.; Deng, T.; Zhao, D.; Feng, P.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G. D. Hierarchically Ordered Oxides. SCIENCE 1998.
    21. Soni S. S.; Brotons, G.; Bellour, M.; Narayanan, T.; Gibaud, A. Quantitative SAXS Analysis of the P123/Water/Ethanol Ternary Phase Diagram. J. Phys. Chem. B 2006.
    22. Luca, V.; Djajanti, S.; Howe, R. F. Structural and Electronic Properties of Sol-Gel Titanium Oxides Studied by X-ray Absorption Spectroscopy. J. Phys. Chem. B 1998.
    23. BULENT, E.; YOLDAS Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. JOURNAL OF MATERIALS SCIENCE 1986.
    24. Mahoney, L.; Koodali, R. T. Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications. Materials 2014, 7 (4), 2697-2746.
    25. Li, W.; Wu, Z.; Wang, J.; Elzatahry, A. A.; Zhao, D. A Perspective on Mesoporous TiO2Materials. Chemistry of Materials 2014, 26 (1), 287-298.
    26. Antonelli, D. M.; Ying, J. Y. Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel method. Angewandte Chemie 1995.
    27. Grosso, D.; Babonneau, F.; Sanchez C.; Balkenende, R. Highly Organized Mesoporous Titania Thin Films Showing Mono Oriented 2D Hexagonal Channels. Advanced Materials 2001.
    28. Crepaldi, E. L.; Soler-Illia, Galo J. de A. A.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, C. Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2. J. AM. CHEM. SOC 2003.
    29. Hung, I. M.; Wang, Y.; Huang, C. F.; Fan, Y. S.; Han, Y. J.; Peng, H. W. Effects of templating surfactant concentrations on the mesostructure of ordered mesoporous anatase TiO2 by an evaporation-induced self-assembly method. Journal of the European Ceramic Society 2010, 30 (10), 2065-2072.
    30. Das, S.; Wu, Q.; Garlapalli, R. K.; Nagpure, S.; Strzalka, J.; Jiang, Z.; Rankin, S. E. In-Situ GISAXS Investigation of Pore Orientation Effects on the Thermal Transformation Mechanism in Mesoporous Titania Thin Films. The Journal of Physical Chemistry C 2014, 118 (2), 968-976.
    31. Grosso, D.; Babonneau, F.; Sanchez C.; Balkenende, R. Highly Organized Mesoporous Titania Thin Films Showing Mono-Oriented 2D Hexagonal Channels. Adv. Mater. 2001.

    QR CODE