研究生: |
蕭琇文 Hsiu-Wen Hsiao |
---|---|
論文名稱: |
清華大學開放式水池反應器之微劑量學研究-組織等效比例計數器之測試與應用 Microdosimetry Study of THOR Mixed Radiation Field: Test and Application of Tissue Equivalent Proportional Counter |
指導教授: |
董傳中
Chuan-Jong Tung 許芳裕 Fang-Yuh Hsu 周文采 Wen-Tsae Chou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 硼中子捕獲治療 、組織等效比例計數器 、微劑量學 、相對生物效應 |
外文關鍵詞: | BNCT, TEPC, microdosimetry, RBE |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硼中子捕獲治療(boron neutron capture therapy, 簡稱BNCT)發展至今近70年,為現今國際上正積極發展的腫瘤治療技術之一。許多國家如美國、日本、荷蘭及義大利等皆將其核反應器應用於BNCT上,近年來更已達臨床治療階段。國內清華大學開放式水池反應器(Tsing Hua open-pool reactor, 簡稱THOR)亦致力於BNCT之研究,期望未來能造福更多病患。在THOR應用於臨床治療病患前,首要工作為利用實驗度量及模擬計算等方式來評估射束品質及假體劑量。
本論文採用組織等效比例計數器(Tissue Equivalent Proportional Counter, 簡稱TEPC)作為度量工具,模擬細胞大小,利用雙計數器微劑量技術(dual counter microdosimetric technique)量測在空氣中及假體不同深度處之THOR混合輻射場能譜,藉以觀測能量沉積變化情形及各輻射所造成之吸收劑量貢獻。此外,經生物加權因數(biological weighting function, r(y))轉換計算可得到深度-有效相對生物效應(effective relative biological effectiveness, effective RBE)曲線、中子相對生物效應(neutron RBE)、光子相對生物效應(photon RBE)與硼中子捕獲相對生物效應(BNC RBE),不但可作為THOR之射束品質評估依據,更可與國際間各中子設施之輻射品質相互比較;未來,治療計畫所得之物理劑量總和(total physical dose)或各輻射之物理劑量(physical dose),利用本論文之effective RBE或neutron RBE、photon RBE與BNC RBE轉換,可進一步得到RBE劑量,作為治療效果評估參考。
1. J. Burmeister, C. Kota et al., Miniature tissue-equivalent proportional counter for BNCT and BNCEFT dosimetry, Med. Phys. 28 (9), pp. 1911-1925, 2001.
2. 李佳信。硼中子捕獲治療劑-含硼氨基酸之合成。國立清華大學碩士論文2000。
3. W. H. Sweet, M. Javid, The possible use of neutron-capturing isotopes such as boron-10 in the treatment of neoplasms. I. Intracracial tumor. J. Neurosurg. 1952; 9, 200-209.
4. C. Kota, R. L. Maughan et al., Use of low-pressure tissue equivalent proportional counters for the dosimetry of neutron beams used in BNCT and BNCEFNT, Med. Phy., Vol. 27, No. 3, March 2000
5. R. D. Rogus, O.K. Harling, and J.C. Yanch, Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor. Med. Phys., 1994. 21(10): p. 1611-1624.
6. C. S. Wuu et al., Microdosimetry for boron neutron capture therapy. Rad. Res. 130, 355-359, 1992.
7. International Commission on Radiation Units and Measurements, Radiation Quantities and Units. Report 33, Washington, D.C., U.S.A., 1979.
8. International Commission on Radiation Units and Measurements, Microdosimetry. Report 36, Bethesda, Maryland, U.S.A., 1980.
9. H. Rossi, M. Zaider, Microdosimetry and its applications, Springer, NY, U. S. A., 1996
10. T. Nunomiya, E. Kim, T. Kurosawa et al., Measurement of lineal-energy distributions for neutrons of 8 keV to 65 MeV by using a tissue-equivalent proportional counter, Radiation Protection Dosimetry, Vol. 102, No. 1, pp. 49-59, 2002.
11. James E. Turner, Atoms, Radiation, and Radiation Prtotection. 2nd ed. 1995 by John Wiley & Sons, Inc.
12. M. Kortesniemi, Solutions for Clinical Implementation of Boron Neutron Capture Therapy in Finland, Department of Physical Sciences Faculty of Science, University of Helsinki, Finland.
13. 黃泰庭。清華水池式反應器改建為硼中子捕獲治療專用核反應爐之超熱中子束最終設計分析。國立清華大學碩士論文 2003。
14. Y. H. Liu et al., On-line Neutron Monitoring System of Epithermal Neutron Beam for BNCT at THOR. in ISNCT-12, 2006.
15. Glenn F. Knoll, Radiation Detection and Measurement. 3rd ed. 2000: John Wiley & Sons, Inc.
16. P. Kliauga, A. J. Waker and J. Barthe, Design of tissue-equivalent proportional counter. Rad. Prot. Dosimetry, Vol. 61, No. 4, pp. 309-322, 1995.
17. A. J. Waker, Principles of experimental microdosimetry. Radiation Protection Dosimetry. Vol. 61, No. 4, pp. 297-308, 1995.
18. L.A. Braby, G.W. Johnson and J. Barthe, Practical considerations in the design and construction of tissue-equivalent proportional counters. Radiation Protection Dosimetry, Vol. 61, No. 4, pp. 351-379, 1995.
19. International Commission on Radiation Units and Measurements, Tissue substitutes in radiation dosimetry and measurement. Report 44, Bethesda, Maryland, U.S.A., 1989.
20. International Commission on Radiation Units and Measurements, Determination of dose equivalents resulting from external radiation sources. Report 39, Bethesda, Maryland, U.S.A., 1985.
21. S. Gerdung , P. Pihet, J. E. Grindborg et al., Operation and application of tissue-equivalent proportional counters. Radiation Protection Dosimetry, Vol. 61, No. 4, pp. 381-404, 1995
22. C.P. Raaijmakers, E.L. Nottelman, and B.J. Mijnheer, Phantom materials for boron neutron capture therapy. Phys Med Biol, 45(8), pp. 2353-2361, 2000.
23. International Commission on Radiation Units and Measurements, Photon, electron, proton and neutron interaction data for body tissues, Report 46, Bethesda, Maryland, U. S. A., 1992.
24. International Commission on Radiation Units and Measurements, Phantoms and Computational Models in Therapy, Diagnosis and Protection, Report 48, Sevres, France, 1991.
25. T. E. Burlin, A generalized theory of cavity ionization, Br. J. Radiol., 39, pp.727, 1966.
26. 許芳裕。硼中子捕獲治療的微劑量學應用與治療計畫驗證之研究。國立清華大學博士論文2003。
27. P. Pihet, H. G. Menzel et al., Biological weighting function for RBE specification of neutron therapy beams. Intercomparison of 9 European Centres. In: Proc. 10th symp. on microdosimetry, Radiat. Prot. Dosim., 31, 431-442(1990).
28. S. Green, M. Gainey and C. Wojnecki, Determination of an RBE for an Epithermal Neutron Beam for BNCT from Microdosimetric Measurements, ISNCT8, LaJolla, California, 1998.
29. G. Coutrakon, J. Cortese et al., Micordosimety spectrum of the Loma Linda proton beam and relative biological effectiveness comparisons, Med. Phys., 24, 1499-1506, 1997.
30. T. Loncol, V. Cosgrove et al., Radiobiological effectiveness of radiation beams with broad spectra: microdosimetric analysis using biological weighting functions, Radiat. Prot. Dosim., 52, 347-352(1994).
31. H. H. Rossi, M. Zaider, Microdosimetry and its applications, Radiation Research, Vol. 145, No. 5, p. 652, 1996.
32. T. Nunomiya, E. Kim, T. Kurosawa et al., Measurement of lineal-energy distribution for neutrons of 8 keV to 65 MeV by using a tissue-equivalent proportional counter, Radiation Protection Dosimetry, Vol. 102, No. 1, pp. 49-59, 2002.
33. Stopping power and range tables for helium ions:
http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html
34. J. Handloser, Far West Technology Inc.
35. C. Kota, R. L. Maughan, Microdosimetric Analysis of absorbed dose in boron neutron capture therapy, Radiation Protection Dosimetry, Vol. 70, Nos. 1-4, pp. 555-558, 1997.
36. J. Burmeister, C. Kota et al., Characterization of miniature tissue-equivalent proportional counters for neutron radiotherapy applications, Phy. Med. Biol. 47, pp. 1633-1645, 2002.
37. J. S. Liu, simulation code of microdosimetry.
38. J. Burmeister, K. Riley et al., Microdosimetric intercomparison of BNCT beams at BNL and MIT, Med. Phys. 30(8), 2131-2139, August 2003.
39. J. Capala, J.A. Coderre and A.D. Chanana, A treatment planning comparison of BPA- or BSH-based BNCT of malignant gliomas. In: B. Larsson, J. Crawford and R. Weinreich (eds) Advances in Neutron Capture Therapy. Vol. I, Medicine and Physics. Amsterdam: Elsvier Science,1997; 133-137 (these proceedings).
40. J. Capala, M. Chadha, J.A. Coderre, A.Z. Diaz et al, Radiation doses to brain under BNCT protocols at Brookhaven National Laboratory. In: B. Larsson, J. Crawford and R. Weinreich (eds) Advances in Neutron Capture Therapy. Vol. I, Medicine and Physics. Amsterdam: Elsvier Science,1997; 51-55 (these proceedings).