簡易檢索 / 詳目顯示

研究生: 林哲宇
Che-Yu Lin
論文名稱: 無電鍍鎳合金應用於直接甲醇燃料電池陽極雙極板之研究
Electroless Ni-based Alloy as Anode Coating Material for Direct Methanol Fuel Cell
指導教授: 王詠雲
Yung-Yun Wang
萬其超
Chi-Chao Wan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 73
中文關鍵詞: 無電鍍燃料電池陰極保護法
外文關鍵詞: Electroless, Fuel Cell, Cathodic protection
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以無電鍍法製備低電阻率及耐腐蝕性高之Ni-P薄膜作為金屬表面改質之材料以取代傳統石墨製雙極板來減少燃料電池的重量、體積與成本的花費及其在直接甲醇燃料電池上之應用可行性分析之探討。
    所得到的無電鍍鎳磷薄膜用EDX分析組成為Ni:85-87 at.%、 P:13.5-14.9 at.%且四點探針(Four-point probe)的數據顯示電阻率介於54-95 μΩ-cm間。此外,薄膜會利用電子顯微鏡(SEM)、X-ray粉末繞射(XRD)及動態電位極化法(Potentiodynamic test)來研究薄膜表面的型態、微結構及腐蝕的性質。
    由動態電位極化法(Potentiodynamic test)實驗結果顯示,當磷成份含量高及鍍層結構為無晶形時,在直接甲醇燃料電池的陽極端模擬環境中(0.5M硫酸 + 10vol % 甲醇水溶液),具有較惰性的腐蝕電位,此外經過10小時的定電位測試(Potentiostat test, -0.1V vs. 甘汞電極),電流均呈現負值,表示在我們的系統中提供了類似”陰極保護(Cathodic protection)”的功能;此外,利用ICP-MS分析長時間定電位測試後的溶液,沒有發現溶液內有任何的金屬離子存在,表示沒有腐蝕現象的發生,再者,將鍍層實際應用在DMFC上,實驗結果顯示可以提高電池約18%的性能。除了上述的結果,利用無電鍍進行表面改質具有較其他物理方法如物理氣相沉積法(PVD)等操作方便且成本較低的優勢,因此有相當大的潛力可應用於直接甲醇燃料電池雙極板的開發。


    Our study is to develop a coating with low resistivity and high corrosion resistance to protect the metallic substrate, which serves to replace the traditional graphite material to reduce the weight, volume and cost for direct methanol fuel cell (DMFC).
    The elemental composition of the electrolessly deposited Ni-P coating in this report has been determined to be Ni : 85-87 at.%, P : 13.5-14.9 at.% by EDX. And four-point probe results show the resistivity of the coatings to be around 54-95 μΩ-cm. In addition, various analytical methods were employed including, the surface morphology study by SEM, crystal structure by XRD and corrosion properties by potentiodynamic test.
    The results of potentiodynamic test reveal that Ni-P coating with higher P content and amorphous structure shows nobler corrosion potential than other materials in the simulated anode working environment (0.5M H2SO4 + 10vol % methanol solution). And the potentiostat test shows the negative corrosion current at all times (-0.1V vs. SCE), meaning the negative current provides “cathodic protection” in our system. After analyzing the electrolyte for 10 hrs by potentiostatic test, no metal ions were found in the solution. Besides, the real DMFC performance test shows excellent performance than commercial one (about 18% growth). Since, the electroless deposition method is more easily controlled and less expensive than the PVD or CVD processes, it has high potential as corrosion protection coating for DMFC bipolar plate.

    Abstract 摘要 Table of Contents List of Figures List of Tables Chapter 1 Introduction Chapter 2 Literature Review 2-1 Recent development of fuel cell 2-2 The principle and the components of the DMFC 2-2-1 Working theory of DMFC 2-2-2 The bipolar plate of DMFC 2-2-2-1 Requirement of the bipolar plates 2-2-2-2 Types of bipolar plate 2-3 The corrosion effect of bipolar plates on DMFC 2-3-1 Corrosion caused failure of bipolar plates 2-3-1-1 Expiration factor by pinhole formation 2-3-1-2 Expiration factor by electrocatalyst positioning and membrane contamination in MEA Chapter 3 Electroless Ni-based coating for bipolar plate corrosion protection 3-1 Introduction 3-1-1 Material properties – amorphous structure and low corrosion rate 3-1-2 Deposition technologies 3-2 Literature review 3-2-1 Electroless nickel-based alloys 3-2-1-1 Ni-B films 3-2-1-2 Ni-P and Ni-W-P films 3-2-1-2-1 Corrosion resistance and mechanical property 3-2-1-2-2 Electrical resistivity 3-2-1-2-3 Barrier layer for copper in semiconductor application 3-3 The objectives of this research Chapter 4 Experiment 4-1 Experiment procedure 4-1-1 Pretreatment (cleaning and activation) 4-1-2 Bath condition of electroless deposition of Ni-P & Ni-B-P film 4-1-3 Characterization and measurement 4-1-3-1 Surface morphology and component analysis 4-1-3-2 Crystal structure identification 4-1-3-3 Film thickness measurement 4-1-3-4 Electrical resistivity measurement 4-1-3-5 Electrochemical characterization 4-1-3-6 Real fuel cell test for Ni-P coating layer verification Chapter 5 Results and discussions 5-1 Deposition rate, film composition and potentiodynamic test 5-1-1 pH effect 5-1-2 Bath temperature effect 5-1-3 Coating time effect 5-2 Surface morphology and crystal structure 5-2-1 pH effect on crystal structure 5-2-2 Bath temperature effect on crystal structure 5-2-3 Coating time effect on crystal structure 5-3 Boron content effect 5-4 Heat-treatment effect 5-5 Electrical property 5-6 Potentiostatic test in simulated anode condition 5-7 DMFC performance test Chapter 6 Conclusions Chapter 7 References

    [1] D. P. van Vuuren, J. Cofala, H. E. Eerens, R. Oostenrijk, C. Heyes, Z. Klimont, M. G. J. den Elzen and M. Amann, Energy Policy 34 (2006) 444 – 460.
    [2] Bp company, www.Bp.com.
    [3] Chenggang Xie, Joseph Bostaph and Jeanne Pavio, Journal of Power Sources 136 (2004) 55 – 65.
    [4] Wolf Vielstich, Journal of the Brazilian Chemical Society 14 (2003) 503 – 509.
    [5] C. K. Dyer, Journal of Power Sources 106 (2002) 31 – 34.
    [6] Xiaoming Ren, Piotr Zelenay, Sharon Thomas, John Davey and Shimshon Gottesfeld, Journal of Power Sources 86 (2000) 111 – 116.
    [7] L. Carrette, K. A. Friedrich, and U. Stimming, Fuel Cells (2001), 1, 5.
    [8] T. Iwashita, “Methanol and CO electrooxidation”, in Handbook of Fuel Cell, vol 2, JOHN WILEY & SONS, Chichester, England, 2003, Chapter 41.
    [9] Biswa R. Padhy and Ramana G. Reddy, Journal of Power Sources 153 (2006) 125 – 129.
    [10] J. Wind, A. LaCroix, S. Braeuninger, P. Hedrich, C. Heller and M. Schudy, “Metal bipolar plates and coatings”, in Handbook of Fuel Cell, vol 3, JOHN WILEY & SONS, Chichester, England, 2003, Chapter 25.
    [11] Franco Barbir and Frano, “PEM fuel Cells: theory and practice”, chapter 4.5, Amsterdam; Elsevier Academic Press, 2005 Boston
    [12] Hsu-Chiang Kuan, Chen-Chi M. Ma, Ke Hong Chen and Shin-Ming Chen, Journal of Power Sources 134 (2004) 7-17.
    [13] G. O. Mepsted and J. M. Moore, “Performance and durability of bipolar plate materials”, in Handbook of Fuel Cell, vol 3, JOHN WILEY & SONS, Chichester, England, 2003, Chapter 24.
    [14] Szu-Hua Wang, Jinchyau Peng and Wai-Bun Lui, Journal of Power Sources 160 (2006) 485-489.
    [15] Szu-Hua Wang, Jinchyau Peng, Wai-Bun Lui and Jin-Sheng Zhang, Journal of Power Sources 162 (2006) 486-491.
    [16] John A. Turner et al., “Corrosion Protection of Metallic Bipolar Plates for Fuel Cells”, DOE Hydrogen Program 2006 Annual Merit Review
    [17] K. S. Weil, Z. G. Yang, G. G. Xia and J. Y. Kim., “Development of Low-Cost, Clad Metal Bipolar Plates for PEM Fuel Cell”, Project report 2006, Pacific Northwest National Laboratory.
    [18] Moucheng Li, Suzhen Luo, Chaoliu Zeng, Jianian Shen, Haichao Lin and Chunan Cao, Corrosion Science 46 (2004) 1369-1380.
    [19] H. Tawfik, Y. Hung and D. Mahajan, Journal of Power Sources 163 (2007) 755-767.
    [20] Corrosion Resistance PEM Fuel Cell, United States Patent, Patent no. 5,624,769.
    [21] H. Wang, M. P. Brady, G. Teeter, J. A. Turner, Journal of Power Source 138 (2004) 86-93.
    [22] A.Pozio, R. F. Silva, M. De Francesco and L. Giorgi, Electrochimica Acta 48 (2003) 1543-1549.
    [23] Michael J. Kelly, Gunter Fafilek, Jurgen O. Besenhard, Hermann Kronberger and Gerhard E. Nauer, Journal of Power Sources 145 (2005) 249-252
    [24] Chen-Chiang Huang, Fuel Cell (2005), p4-25
    [25] The web site of Antig technology Co. Ltd, www.antig.com, “How Fuel Cells work”.
    [26] J. Jayaraj, Y. C. Kim, K. B. Kim, H. K. Seok, E. Fleury, Science and Technology of Advance Materials 6 (2005) 282-289.
    [27] Guojin Lu and Giovanni Zangari, Electrochimica Acta 47 (2002) 2969 – 2979.
    [28] Shuo-Jen, Ching-Han Huang, Yu-Pang Chen, Journal of Materials Processing Technology 140 (2003) 688 – 693.
    [29] A. Brenner, Journal of Research Nation Bar, standard, 37 (1946) 1.
    [30] T. S. N. Sankara NaraYanan, K. Krishnaveni and S. K. Seshadri, Materials Chemistry and Physics 82 (2003) 771 – 779.
    [31] Y. Gao, Z. J. Zheng, M.Zhu and C. P. Luo, Materials Science and Engineering A 381 (2004) 98 – 103.
    [32] Tetsuya Osaka, Nao Takano, Tetsuya Kurokawa, Tomomi Kaneko and Kazuyoshi Ueno, Surface and Coating Technology 169 – 179 (2003) 124 – 127.
    [33] G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, America Electroplaters and Surface Finishers Society, Orlando, Ch. 1 (1990).
    [34] H. Ashassi-Sorkhabi and S. H. Rafizadeh, Surface and Coating Technology 176 (2004) 318 – 326.
    [35] M. M. Younan and M. Shoeib, Galvanotechnik, 932 (2002) 100.
    [36] Y. Y. Tsai, F. B. Wu, Y. I. Chen, P. J. Peng, J. G. Duh and S. Y. Tsai, Surface and Coatings Technology, 146-147, 502 (2001).
    [37] J. N. Balaraju, C. Anandan and K.S. Rajam, Surface Engineering, 21 (2005) 215.
    [38] S. Y. Chang, C. C. Wan, and Y. Y. Wang, Mater Thesis, National Tsing Hua University, HsinChu, Taiwan (2004).
    [39] Franco Barbir, PEM fuel cells: theory and practice, Amsterdam; Elsevier Academic Press, Boston (2005).
    [40] Vaibhav V. Nikam and Ramana G. Reddy, Journal of Power Sources 152 (2005) 146 – 155.
    [41] M. C. Li, C. L. Zeng, S. Z. Luo, J. N. Shen, H. C. Lin [42] Shuo-Jen Lee, Ching-Han Huang and Yu-Pang Chen, Journal of Materials Processing Technology 140 (2003) 688 – 693.
    [43] John A. Turner and Heli Wang, Nation Renewable Energy Laboratory and Michael P. Brady, Oak Ridge National Laboratory, Project report (2006)
    [44] Guojin Lu and Giovanni Zangari, Journal of The Electrochemical Society 150 (2003) C777 – C786.
    [45] D. kim, K. Aoki and O. Takano, Journal of the Electrochemical Society, 142 (1995) 3763 – 3767.
    [46] Xueping Gan, Yating Wu, Lei Liu, Bin Shen, Wenbin Hu, Surface & Coating Technology 201 (2007) 7018 – 7023.
    [47] M. V. Ivanov, Protection of Metals 37 (2001) 592 – 596.
    [48]Yan Wang, Derek O. Northwood, International Journal of Hydrogen Energy 32 (2007) 895 – 902.
    [49] Lang FQ, Yu ZM, Surface Coatings Technology 145 (2001) 80 – 87.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE